According to a new theory argued by Anders Sandberg, Eric Drexler and Toby Ord, the answer to the Fermi Paradox may be simple: humanity is alone in the Universe. Credit: ESA/Gaia/DPAC
For as little as 1$ monthly, become a Patron & support our strange little channel: Secureteam is your source for reporting the best in new UFO sighting news, and the strange activity happening on and off of our planet. Email me YOUR footage and help us continue the good search for disclosure! : ?E-mail me your ideas & footage ?Secureteam Shirts! ?Twitter: ?Facebook: Send mail to: Secureteam 1712 11th St. Portsmouth, OH 45662 Box 372 Intro Music: Spellbound by Kevin Macleod Outro Music: "Dark Trap" by rh_music For business inquiries or concerns regarding footage used in this video, please contact me at: and I'll get back to you within 48 hours. Thanks!
The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester
How did the universe begin? Where will it end? Are there other worlds like Earth? What is the search for Earth-like planets telling us about our place in the cosmos? Is ours one of countless life-bearing worlds in the galaxy, or is it a rare Garden of Eden in a barren universe? The answers may be found in the rubble of exploding stars and gigantic black holes. Find us on social media! X: (former Twitter Facebook TikTok  X (formerly Twitter) MagellanTV Documentaries (@MagellanTVDocs) on X The premiere documentary streaming platform for the lifelong learners out there.  Facebook Log into Facebook Log into Facebook to start sharing and connecting with your friends, family, and people you know.
Fraser Cain Published on Jun 20, 2013 In this short explainer video, Universe Today publisher investigates the riddle of the Fermi Paradox; if the Universe is big, and old, and there are countless habitable worlds, why do we see no evidence of life? Where are all the aliens?
<>
An exploration of ten unsettling possibilities regarding alien life. My Patreon Page: My Event Horizon Channel: Music: Cylinder Eight by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. Source: .Cylinder Five by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license Source: Cylinder Three by Chris Zabriskie is licensed under a Creative Commons Attribution 4.0 license. Source: Darkest Child by Kevin MacLeod is licensed under a Creative Commons Attribution 4.0 license. Source: Artist: Music in this video Learn more Listen ad-free with YouTube Premium Song Cylinder Eight Artist Chris Zabriskie Album Cylinder Eight Licensed to YouTube by YouTube Audio Library
<>
What is a realistic scenario of finding life outside Earth? What steps to we need to take to get there and how can we prove it's there. Looking for answers with Dr Harrison Smith and Dr Cole Mathis. When Did Evolution Start on Earth You Don't Understand The Fermi Paradox 📜 The Futility of Exoplanet Biosignatures 00:00 Intro 01:06 What is a biosignature 15:34 Incremental approach 23:42 Prejudice against technosignatures 33:26 Future telescopes 47:20 Gaining progress 51:22 Final thoughts and more interviews 🎧 PODCASTS Universe Today: Astronomy Cast: --------------------------------------------------------------------------- 🤳 OTHER SOCIAL MEDIA Fraser Cain's Twitter Universetoday's Twitter Universetoday's Facebook Universetoday's Instagram 📩 CONTACT FRASER ⚖️ LICENSE Creative Commons Attribution 4.0 International (CC BY 4.0) You are free to use my work for any purpose you like, just mention me as the source and link back to this video.
Frank Drake writing his famous equation on a white board. Credit: seti.org
Is anybody out there? Anybody at all? Credit: UCLA SETI Group/Yuri Beletsky, Carnegie Las Campanas Observatory
Published on Apr 23, 2016 The search for near-Earth-size exoplanets is on. Although 1000's of exoplanets have been discovered, few are near-Earth-size. But that doesn't mean they don't exist. Now, teams at JPL are working on creative new technologies to not only discover these elusive planets but expand our search for signs of life beyond our solar system. NASA 360 joins Stuart Shaklan of NASA's Jet Propulsion Laboratory as he discusses future of exoplanet discovery. To view the original full version talk from which this video was created please visit Category People & Blogs License Standard YouTube License
From SCOOP.IT In the search for life beyond Earth, false alarms abound. Researchers have generally considered, and rejected, claims ranging from a 1970s report of life on Mars to the 1990s discovery of fossilized space microbes in a meteorite. Now, inspired by the detection of thousands of planets beyond the Solar System, NASA has started a fresh effort to learn how to recognize extraterrestrial life. The goal is to understand what gases alien life might produce and how Earth-bound astronomers might detect such biosignatures in light passing through the atmospheres of planets trillions of kilometers away (see Searching for alien life). The effort comes at a crucial time, as astronomers grapple with how to interpret exoplanet data from the next generation of telescopes. Some scientists are working to understand how nature could produce archetypal biosignature gases, such as oxygen, in the absence of living organisms. Others are trying to think as expansively as possible about the types of biochemistry that could sustain life. "We could fool ourselves into thinking a lifeless planet has life or we could be missing life because we don't really understand the context of what could be produced on another planet", says Sarah Rugheimer, an astronomer at the University of St Andrews, UK. Detecting a biosignature gas is just the first step to understanding what could be happening on an exoplanet. Each world has its own combination of physical and chemical factors that may or may not lead to life, says Victoria Meadows, an astronomer at the University of Washington in Seattle. Planets are hard, and we shouldn't think they are all going to be the same or reveal their secrets very easily, she says. A planet's environment is key. Some Earth-sized planets orbit M dwarf stars the most common type of star in the Galaxy at the right distance to harbor liquid water. But Meadows' collaborators have shown that photo-chemical reactions can send water into the planet's atmosphere and then break off its hydrogen, which escapes into space. What's left is a thick blanket of oxygen that might seem as if it came from living organisms, but results from a run-away greenhouse effect. Published July 26, 2016 Written by Dr. Stefan Gruenwald
Streamed live on Apr 26, 2017 Date: Wednesday, April 26, 2017 - 10:00am Location: 2318 Rayburn House Office Building Advances in the Search for Life Witnesses Dr. Thomas Zurbuchen, Associate Administrator, Science Mission Directorate, National Aeronautics and Space Administration (NASA) Dr. Adam Burgasser, Professor of Physics, University of California, San Diego and UCSD Center for Astrophysics and Space Science; Fulbright Scholar Dr. James Kasting, Chair, Planning Committee, Workshop on the Search for Life Across Space and Time, National Academies of Science, Engineering, and Medicine; Evan Pugh Professor of Geosciences, Pennsylvania State University Dr. Seth Shostak, Senior Astronomer, SETI Institute Category Science & Technology License Standard YouTube License
NASA's Kepler space telescope was the first agency mission capable of detecting Earth-size planets. Credit: NASA/Wendy Stenzel
The Kinds of Advanced Alien Civilizations (infographic)
Futurism saved to Infographics Alien or Natural: Strangest Sounds & Signals Detected from Space Space is filled with noise; inaudible frequencies of radiation that carry the secrets of the universe. The question is, are they alien or are they natural?
The term METI was coined by Russian scientist Alexander Zaitsev, who sought to draw a distinction between SETI and METI. As he explained in a 2006 paper on the subject: The science known as SETI deals with searching for messages from aliens. METI science deals with the creation of messages to aliens. Thus, SETI and METI proponents have quite different perspectives. SETI scientists are in a position to address only the local question - does Active SETI make sense? In other words, would it be reasonable, for SETI success, to transmit with the object of attracting ETI's attention? In contrast to Active SETI, METI pursues not a local and lucrative impulse, but a more global and unselfish one to overcome the Great Silence in the Universe, bringing to our extraterrestrial neighbors the long-expected annunciation - You are not alone!
Artist's impression of how the surface of a planet orbiting a red dwarf star may appear. The planet is in the habitable zone so liquid water exists. However, low levels of ultraviolet radiation from the star have prevented or severely impeded chemical processes thought to be required for life to emerge. This causes the planet to be devoid of life. Credit: M. Weiss/CfA
Artist's impression of the planet orbiting a red dwarf star. Credit: ESO/M. Kornmesser
Artist's impression of the surface of the planet Proxima B orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO
Artist's impression of a sunset seen from the surface of an Earth-like exoplanet. Credit:ESO/L. Calada
Transit Photometry, which detects planets by measuring small changes in a star's lightcurve, is the most widely-used means of exoplanet detection. Credit: NASA/Tim Pyle
Artist's impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center
NASA's Kepler space telescope was the first agency mission capable of detecting Earth-size planets. Credit: NASA/Wendy Stenzel
Published on Nov 30, 2015 All of the Kepler multi-planet systems (1705 planets in 685 systems as of 24 November 2015) on the same scale as the Solar System (the dashed lines). The size of the orbits are all to scale, but the size of the planets are not. For example, Jupiter is actually 11x larger than Earth, but that scale makes Earth-size planets almost invisible (or Jupiters annoyingly large). The orbits are all synchronized such that Kepler observed a planet transit every time it hits an angle of 0 degrees (the 3 o'clock position on a clock). Planet colors are based on their approximate equilibrium temperatures, as shown in the legend. Source code to make your own can be found here: Category Science & Technology
Uploaded on Feb 28, 2012 Visualization of the planetary systems discovered by Kepler (Batalha et al.), i.e. those targets with more than one transiting object. There are 885 planet candidates in 361 systems, doubling the number of systems in the original Kepler Orrery. In this video, * orbits are to scale with respect to each other, and planets are to scale with respect to each other (a different scale from the orbits). * The colors are in order of semi-major axis. Two-planet systems (242 in all) have a yellow outer planet; 3-planet (85) green, 4-planet (25) light blue, 5-planet (8) dark blue, 6-planet (1, Kepler-11) purple. * At the end of the video the catalog numbers appear (Kepler Object of Interest, KOI). Category Science & Technology License Creative Commons Attribution license (reuse allowed) Remix this video
Uploaded on Feb 3, 2011 All the multiple-planet systems discovered by Kepler as of 2/2/2011; orbits go through quarters Q0-Q2. Hot colors to Cool colors (Red to yellow to green to cyan to blue to gray) are Big planets to Smaller planets, relative to the other planets in the system. Category Science & Technology License Standard YouTube License
Published on Nov 30, 2015 All of the Kepler multi-planet systems (1705 planets in 685 systems as of 24 November 2015) on the same scale as the Solar System (the dashed lines). The size of the orbits are all to scale, but the size of the planets are not. For example, Jupiter is actually 11x larger than Earth, but that scale makes Earth-size planets almost invisible (or Jupiters annoyingly large). The orbits are all synchronized such that Kepler observed a planet transit every time it hits an angle of 0 degrees (the 3 o'clock position on a clock). Planet colors are based on their approximate equilibrium temperatures, as shown in the legend. Source code to make your own can be found here The previous version (Kepler Orrery III by Dan Fabrycky) can be seen here: https://www.youtube.com/watch?v=gnZVv... Category Science & Technology License Standard YouTube License
In case you need a reminder that the solar system was a harsh place to grow up, the early Earth looks like it was in the middle of a shooting gallery in this model. The map that you see above shows a scenario for where researchers believe asteroids struck our planet about four billion to 4.5 billion years ago, which is very early in the Earth's five-billion-year history.
Ann Yin Complex Organic Molecules Discovered in Infant Star System: Hints that Prebiotic Chemistry Is Universal Atacama Large Millimeter/submillimeter Array (ALMA), reveals that the proTOPlanetary disk surrounding the million-year-old star MWC 480 is brimming with methyl cyanide (CH3CN), a complex carbon-based molecule. Both this molecule and its simpler cousin hydrogen cyanide (HCN) were found in the cold outer reaches of the star�s newly formed disk, in a region that astronomers believe is analogous to our own Kuiper Belt -- the realm of icy planetesimals and comets beyond Neptune.
Magnetic field on a terrestrial planet HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS Nearly four billion years ago, life arose on Earth. Life appeared because our planet had a rocky surface, liquid water, and a blanketing atmosphere. But life thrived thanks to another necessary ingredient: the presence of a protective magnetic field.
Scientists are doing everything they could to find proof of living aliens, even eavesdropping. (Image used for representation only.) bertomic / Pixabay CC BY 1.0 Researchers on a hunt for extraterrestrial intelligence have reportedly taken the help of a powerful radio telescope to tune in to a neighboring star system, which is located relatively near to our planet. The aim of the scientists is to detect any sound, howsoever weak, that could signal the existence of an alien civilization. Astronomers from the SETI Institute used the Allen Telescope Array (ATA) in California to eavesdrop on Trappist 1, a red dwarf star system that has at least three habitable exoplanets to see if it is transmitting radio waves. Last year Kepler had detected a mysterious transit signal from a star known as Tabby's star, officially called KIC 8462852. The transit, which basically measures the dimness in the brightness of a star when a planet orbits it, was nothing like ever seen before because the brightness dimmed by 20 percent. Scientists were puzzled by the occurrence, and suggested that a swarm of comets may have been the cause of the strange signal.
NOTE TO OUR READERS: When this video was released earlier today, it featured the voice of the late Carl Sagan speaking about the Search for Extraterrestrial Intelligence (SETI). The Carl Sagan folks Druyan-Sagan Associates in Ithaca, New York have asked that the voiceover be removed and want 6-8 weeks to evaluate whether it can be included here. Maybe Sagan's voice will return to enhance this video, but, in the meantime, enjoy it. It's still an awesome video. This morning, video producer Gavin Heffernan dropped EarthSky a note, saying: enclosed is a link to DISHDANCE, a SETI [Search for Extraterrestrial Intelligence] tribute and timelapse medley of radio astronomy facilities This timelapse was filmed as part of our ongoing crowdfunded quest to explore the effects and dangers of urban light pollution in contrast with some of the most incredible Dark Sky Preserves in North America. This video was shot by my Skyglow partner Harun Mehmedinovic (www.Bloodhoney.com) and myself (SunchaserPictures.com). More credits: Music by Tom Boddy, music track Thoughtful Reflections. Edited by: Harun Mehmedinovic Dishdance was filmed at Very Large Array Observatory in New Mexico, Owens Valley Observatory in California, and Green Bank Observatory in West Virginia
A study published in October 2016 reported the detection of odd light pulses coming from 234 of 2.5 million stars observed by the Sloan Digital Sky Survey's 2.5-meter telescope in New Mexico (pictured here). These pulses are consistent with signals that intelligent aliens might produce, the study authors claimed. Credit: SDSS/Fermilab Visual Media Services/NASA Strange pulses of cosmic light might be signals from hundreds of different alien civilizations or just the latest false alarm in the tortuous search for ET. This month, astrophysicists Ermanno Borra and Eric Trottier, both from Laval University in Quebec, announced that they had spotted mysterious light signals coming from 234 different stars in our Milky Way galaxy. These pulses match the profile of signals that Borra, in a 2012 paper, predicted intelligent aliens might use to get our attention, the authors wrote.
Of course, there are whole websites devoted to arguing the case for long-lost civilizations on the deserts of Mars, complete with heavily re-processed photos that owe more to the imagination of contemporary humans than to the ingenuity of extraterrestrial architects and engineers. Yet there is also some serious and well considered work being done in the field of what has been called SETA (Search for Extraterrestrial Artifacts).
The object certainly resembles a fossilized femur, but the odds that it's anything other than a weird-looking rock are, well, astronomical. Over the years, people eyeing pictures from Mars have claimed to have seen everything from an iguana to a finger to weird faces. But NASA hasn't been too impressed.
Video Caption: The sparks that appear on the baseball-sized rock (starting at :17) result from the laser of the ChemCam instrument on NASA's Curiosity Mars rover hitting the rock. Credit: NASA/JPL-Caltech/MSSS ChemCam is used to determine the composition of Martian rocks and soils at a distance of up to 25 feet (8 meters) yielding preliminary data for the scientists and engineers to decide if a target warrants up close investigation and in rare cases sampling and drilling activities.
Astronomers have taken a close-up time lapse image of the fast-rotating star zeta Andromedae. Starspots can be seen clearly. Credit: Rachael Roettenbacher, John Monnier, et al. Astronomers at the University of Michigan have taken close-up pictures of a nearby star that show starspots, sunspots outside our solar system. The researchers have used a technique called interferometry to build essentially the first time lapse of zeta Andromedae across one of its 18-day rotations. Zeta Andromedae is about 181 light-years away in the northern constellation Andromeda. A paper on the findings is published in the current issue of Nature. See more
Follow The searching of the Allen Telescope Array
Berkley seti institute
Technosearch is a web-based tool that keeps track of SETI papers from 1960 until the present day and allows observers from all over the world to submit their own searches, keeping us current with the times. Technosearch keeps track of the following: the title of the search paper (or the popular name of the search), the name of the observers, the date of the search, the objects observed, the facility at which the search took place, the size of the telescope used, the sensitivity of the instrument used, the resolving power of the instrument, the time that was spent observing each object, the reference where the search can be found in print, the link where the search can be found online, and comments that explain the search strategy and a place where the observer can make note of whatever else they would like to report. Technosearch hosts many SETI related papers that were hosted in old obscure journals and are hard to access otherwise along with papers that were stuck behind payment barriers. The search for technosignatures (evidence that a technology producing civilization existed) will likely take many generations to come to any sort of meaningful conclusion, and in order to search in new places requires that we know where we have already searched. This tool exists to give the astronomers of tomorrow a way to look into the past and see where and how we searched today.
This is a list containing the SETI searches looking for signals in the Radio part of the EM spectrum. This list contains the first SETI observations written in the 1960s up to present day searches being conducted by teams all over the world. To see the bibliographic information, click on the title of the search you're interested in.
This is a list showing the SETI searches that was conducted in the optical and near infrared spectrum of the EM spectrum. This list contains the results from searches conducted in 1977 up to present day research. To see the bibliographic information, click on the title of the search you're interested in.
This is a list of the searches that are more concerned with going through - usually large - sets of data that has been collected by a survey project prior. To see the bibliographic information, click on the title of the search you're interested in.
SETI@home: New forum, and a new contributor. We have added a new forum called SETI Perspectives that will showcase thoughts on SETI and related TOPics from people not directly connected with the Berkeley SETI group. Richard Lawn, Ph.D is our first contributor with an article about 'Oumuamua, the first object we've seen that convincingly originates from outside from outside the solar system.We hope have a long collaboration with Richard. Please welcome him into the SETI@home family.
Jon M. Jenkins - Jon is the Analysis Lead for Kepler, which means that he heads up a group of about two dozen scientists and programmers who designed and built the software that makes this dramatic search for other worlds possible. With a brightness precision of 20 parts per million, Kepler should be able to discover planets that are the same size as the rocky, inner orbs of our own solar system. By making an inventory of such worlds, Kepler will answer one of the most intriguing questions in astrobiology: are Earth-size planets abundant or rare?
A group of SETI astronomers led by Duncan Forgan, and including myself and BSRC director Andrew Siemion, has published a revised version of the Rio Scale . The Rio Scale is designed to predict the public impact a signal would have, like the Richter scale does for earthquakes. The prior version of the Rio scale, in addition to being rarely used, tended to overestimate the impact of low quality or low significance reports of detection. Now all we have to do is convince other SETI astronomers and the press to use it.
Published on May 11, 2015 Professor Shelley Wright is an astrophysicist, recently at the University of Toronto, and now faculty at the University of California, San Diego. Here she talks about her research into infrared and visible light SETI. She explains why if ETs are trying to communicate over long distances, they may be using IR lasers to do it. She was a postdoctoral researcher at UC Berkeley from 2009 - 2011 and continues to collaborate with Berkeley SETI Research Center scientists. Learn more about Shelley : Follow us on Twitter Facebook: Category Science & Technology License Standard YouTube License
Published on Nov 10, 2014 For over a half century, astronomers involved in the Search for Extraterrestrial Intelligence (SETI) have scanned the skies for signals from distant civilizations. Would humans be able to decode information-rich signals from another planet? Could we create a "universal language" that would be meaningful to an independently evolved civilization? To help answer these questions, on November 10-11 2014 the SETI Institute convened a multidisciplinary, international workshop at its headquarters in Mountain View, California. Speakers from six countries drew on disciplines ranging from astronomy and mathematics, to anthropology and linguistics, as they debated the best ways to create meaningful messages. While the two-day workshop was closed to the public, all talks will be posted on the SETI Institute's YouTube channel. On the day following the workshop, several of the speakers will summarize the key ideas discussed as part of the SETI Institute's public weekly colloquium series, held on November 12, at 12:00 noon. Category Science & Technology License Standard YouTube License
Published on Nov 3, 2015 Zuhra Abdurashidova is the newest staff member at Berkeley SETI Research Center. Joining us in June, Zuhra graduated from UC Berkeley with a degree in mechanical engineering. Zuhra is working on high-speed data processing, and management of the new Breakthrough Listen data coming from the Green Bank Telescope. Zuhra grew up in Uzbekistan, and is a serious musician as well as one of the biggest Star Trek fans around. Follow us on Twitter and Facebook Follow us on facebook Category Science & Technology License Standard YouTube License
Published on Jan 22, 2016 Kevin Luong joined Berkeley SETI Research Center as an intern in summer 2015. Kevin worked with David Anderson to revise the NTPCKR system to run on cloud computing servers. There are still a few kinks to sort out, but if it works, this should let us run our data base through NTPCKR in a few weeks instead of more then a year. Kevin transferred to UCLA in the fall, but is continuing to work with SETI to explore cloud computing for other projects. We'll be launching an expanded undergraduate internship program later this year. Follow us on social media for more details when they become available Twitter Facebook Category Science & Technology License Standard YouTube License
Berkeley SETI Research Center's Dr. Steve Croft, in collaboration with colleagues at UC Museum of Paleontology and the Space Sciences Laboratory's "Multiverse" education group have put together an educational site focusing on the conditions needed for life to arise in the Universe. Although aimed primarily at high school teachers and their students, this material may be of interest to broader audiences. In the "Research Profiles" section of the site you can also find an interview with BSRC's Dr. Eric Korpela, Director of SETI@home.
Published on Jul 27, 2016 David MacMahon is a research astronomer with Berkeley SETI Research Center. Dave works on several projects at BSRC, including Breakthrough Listen, designing many of the computer systems we use to process data collected from our telescopes. If you've ever been curious what hardware is required to search for ET, check out this tour of Berkeley SETI behind the scenes. Category Science & Technology License Standard YouTube License
Published on Aug 25, 2016 See some of the highlights of work at Berkeley SETI Research Center. Hear about SETI@home and the Breakthrough Listen optical and radio searches, visit the Green Bank Telescope, see our computing hardware, meet our undergraduate research interns, and preview some of our upcoming video pieces in this five minute teaser. Category Science & Technology License Standard YouTube License
Published on Apr 10, 2017 Take a tour of the Breakthrough Listen instrument at the Green Bank Observatory with Berkeley SETI Research Center engineer Dave MacMahon, and hear GBO Director Karen O'Neil talk about a novel solution to cooling equipment in the server room. Since this video was made, the team has added additional compute nodes in the server room, further expanding the huge range of frequencies that Breakthrough Listen can scan for signs of intelligent life in the Universe. Category Science & Technology License Standard YouTube License
Published on Jul 13, 2017 Breakthrough Listen utilizes the 100-meter Green Bank Telescope in West Virginia in the search for signals from intelligent life beyond Earth. In this interview with Green Bank researcher Ryan Lynch, you'll hear about the difficulties of painting the world's largest steerable telescope, how the telescope picks up incredibly faint signals, and what modern convenience Ryan misses most living in the middle of the National Radio Quiet Zone. Berkely Seti Berkley Seti Facebook Twitter Berkley Seti Instagram Berkley Seti Category Science & Technology License Standard YouTube License
The search for life in the solar system and beyond has to date been governed by a model based on what we know about life on Earth (terran life). Most of NASA's mission planning is focused on locations where liquid water is possible and emphasizes searches for structures that resemble cells in terran organisms. It is possible, however, that life exists that is based on chemical reactions that do not involve carbon compounds, that occurs in solvents other than water, or that involves oxidation-reduction reactions without oxygen gas. To assist NASA incorporate this possibility in its efforts to search for life, the NRC was asked to carry out a study to evaluate whether nonstandard biochemistry might support life in solar system and conceivable extrasolar environments, and to define areas to guide research in this area. This book presents an exploration of a limited set of hypothetical chemistries of life, a review of current knowledge concerning key questions or hypotheses about nonterran life, and suggestions for future research.
Image: Strong signal from the direction of HD 164595. “Raw†record of the signal together with expected shape of the signal for point-like source in the position of HD 164595. Credit: Bursov et al. From the presentation: The estimated probability ~2 X 10-4 to simulate the signal from the direction of the HD164595 by signal-like noise is small, therefore HD164595 is good candidate SETI. Permanent monitoring of this target is needed. All of which makes excellent sense. We can't claim the detection of an extraterrestrial civilization from this observation. What we can say is that the signal is interesting and merits intense scrutiny.
Image: The RATAN-600 radio telescope in Zelenchukskaya. Credit: Wikimedia Commons. Here I'm drawing on a presentation forwarded to me by Claudio Maccone, from which I learn that the team behind the detection was led by N.N. Bursov and included L.N. Filippova, V.V. Filippov, L.M. Gindilis, A.D. Panov, E.S. Starikov, J. Wilson, as well as Claudio Maccone himself, the latter a familiar figure on Centauri Dreams. The work is to be discussed at a meeting of the IAA SETI Permanent Committee, to be held during the 67th International Astronautical Congress (IAC) in Guadalajara, Mexico, on Tuesday, September 27th, 2016,
The super telescopes are coming, enormous ground and space-based observatories that'll let us directly observe the atmospheres of distant worlds. We know there's life on Earth, and our atmosphere tells the tale, so can we do the same thing with extrasolar planets? It turns out, coming up with a single biosignature, a chemical in the atmosphere that tells you that yes, absolutely, there's life on that world, is really tough. Sign up to my weekly email newsletter: Support us at:Support us at: : More stories at Follow us on Twitter: @universetoday Like us on Facebook: Google+ - Instagram - Team: Fraser Cain - @fcain / frasercain@gmail.com /Karla Thompson - @karlaii Chad Weber - Chloe Cain - Instagram: @chloegwen2001 References: The James Webb Telescope Review of Bio signatures (pdf) I've got to admit, I've been pretty bad for this in the past. In old episodes of Astronomy Cast and the Weekly Space Hangout, even here in the Guide to Space, I've said that if we could just sample the atmosphere of a distant world, we could say with conviction if there's life there. Just detect ozone in the atmosphere, or methane, or even pollution and you could say, there's life there. Well, future Fraser is here to correct past Fraser. While I admire his naive enthusiasm for the search for aliens, it turns out, as always, things are going to be more difficult than we previously thought. Astrobiologists are actually struggling to figure out a single smoking gun biosignature that could be used to say there's life out there. And that's because natural processes seem to have clever ways of fooling us. What are some potential biosignatures, why are they problematic, and what will it take to get that confirmation?
Artist concept Sunset on Gliese_667
The supertelescopes are coming, enormous ground and space-based observatories that’ll let us directly observe the atmospheres of distant worlds. We know there’s life on Earth, and our atmosphere tells the tale, so can we do the same thing with extrasolar planets? It turns out, coming up with a single biosignature, a chemical in the atmosphere that tells you that yes, absolutely, there’s life on that world, is really tough. A HREF="https://www.universetoday.com/newsletter">Sign up to my weekly email newsletter: Support us at:Support us at: : More stories at Follow us on Twitter: @universetoday Like us on Facebook: Google+ - Instagram - Team: Fraser Cain - @fcain / frasercain@gmail.com /Karla Thompson - @karlaii Chad Weber - Chloe Cain - Instagram: @chloegwen2001 References: First Map of an Exoplanet Atmosphere Warm Neptune' Has Unexpectedly Primitive Atmosphere Probing Seven Worlds with NASA's James Webb Space Telescope
A Review of Exoplanetary Biosignatures (PDF) I’ve got to admit, I’ve been pretty bad for this in the past. In old episodes of Astronomy Cast and the Weekly Space Hangout, even here in the Guide to Space, I’ve said that if we could just sample the atmosphere of a distant world, we could say with conviction if there’s life there. Just detect ozone in the atmosphere, or methane, or even pollution and you could say, “there’s life there.” Well, future Fraser is here to correct past Fraser. While I admire his naive enthusiasm for the search for aliens, it turns out, as always, things are going to be more difficult than we previously thought. Astrobiologists are actually struggling to figure out a single smoking gun biosignature that could be used to say there’s life out there. And that’s because natural processes seem to have clever ways of fooling us. What are some potential biosignatures, why are they problematic, and what will it take to get that confirmation?
Artist’s impression of the nearest super-Earth to our Solar System. Credit: ESO/M. Kornmesser
n the past few decades, the number of planets discovered beyond our Solar System has grown by leaps and bounds. As of October 4th, 2018, a total of 3,869 exoplanets have been confirmed in 2,887 planetary systems, with 638 systems hosting multiple planets. Unfortunately, due to the limitations astronomers have been forced to contend with, the vast majority of these have been detected using indirect methods.
Yes, we are in the era of watching planets orbit other stars. HR 8799 harbors four super-Jupiters orbiting with periods that range from decades to centuries. Motion interpolation was used on 7 images of HR 8799 taken from the Keck Telescope over 7 years to create this image. Read more about it here: This movie was featured as the Astronomy Picture of the Day on Feb 1st, 2017: I made more of these! Check them out here: Credits: Video making & motion interpolation: Jason Wang (UC Berkeley) Data analysis: Christian Marois (NRC Herzberg) Orbit determination: Quinn Konopacky (UCSD) Data Taking: Bruce Macintosh (Stanford), Travis Barman (University of Arizona), Ben Zuckerman (UCLA) Funded by: NASA NExSS Data from the W. M. Keck Observatory We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.
Image of a planetary-mass object in orbit around brown dwarf 2M1207, taken by a group of astronomers led by Gael Chauvin in July of 2004. Credit: NaCo/VLT/ESO
False-color composite image taken by the Hubble Space Telescope, showing the orbital motion of the planet Fomalhaut b. Credit: NASA/ESA/P. Kalas (UC Berkeley and SETI Institute)
More space news and info at: - a starshade is a large structure used to block the glare of stars, enabling future space telescopes can take pictures of distant exoplanets.
In 2016, Russian-Israeli billionaire Yuri Milner launched Breakthrough Initiatives, a massive non-profit organization dedicated to the search for extra-terrestrial intelligence (SETI). A key part of their efforts to find evidence of intelligent life is Breakthrough Listen, a $100 million program that is currently conducting a survey of one million of the nearest stars and the 100 nearest galaxies.
The Green Bank Telescope, located in West Virginia. Credit: NRAO
Aerial image of the South African MeerKAT radio telescope, part of the Square Kilometer Array (SKA). Credit: SKA
Is anybody out there? Also, are they communicating using technologies that we might recognize? Credit: UCLA SETI Group/Yuri Beletsky, Carnegie Las Campanas Observatory
Can Alien Civilizations Detect Humanity? One of the fascinating things about being a human in this age is that we can do more than wonder about other life and other civilizations. We can actually look for them, although there are obvious limitations to our search. But what’s equally fascinating is that we can wonder if others can see us.
A Type II civilization is one that can directly harvest the energy of its star using a Dyson Sphere or something similar. Credit: Fraser Cain (with Midjourney)
This aerial view shows the ESO’s VLTI, the Very Large Telescope Interferometer. It has a total of eight separate, movable telescopes that can all look at the same object, increasing the interferometer’s angular resolution. Image Credit: ESO
JAXA astronaut Koichi Wakata captured this image of the Great Pyramids from the ISS in February 2023. The most visible one is the Great Pyramid of Giza, built in the 23rd century B.C. Image Credit: Koichi Wakata.
The SETI Ellipsoid (Image credit: Zayna Sheikh)
Illustration of NASA’s Transiting Exoplanet Survey Satellite. Credit: NASA’s Goddard Space Flight Center
Artist impression of ESA’s Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)
The SETI Ellipsoid method, combined with Gaia's distance measurements, offers a robust and adaptable framework for future SETI searches. Researchers can retrospectively apply it to sift through archival data for potential signals, proactively select targets, and schedule future monitoring campaigns. Image credit: Zayna Sheikh
Zhi-Song Zhang,1, 2, 3, 4 Dan Werthimer,3, 4 Tong-Jie Zhang,5 Jeff Cobb,3, 4 Eric Korpela, 3 David Anderson,3 Vishal Gajjar,3, 4 Ryan Lee,4, 6, 7 Shi-Yu Li,5 Xin Pei,2, 8 Xin-Xin Zhang,1 Shi-Jie Huang,1 Pei Wang,1 Yan Zhu,1 Ran Duan,1 Hai-Yan Zhang,1 Cheng-jin Jin,1 Li-Chun Zhu,1 and Di Li1, 2 1National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Space Sciences Laboratory, University of California, Berkeley, Berkeley CA 94720 4Department of Astronomy, University of California Berkeley, Berkeley CA 94720, USA 5Department of Astronomy, Beijing Normal University, Beijing 100875, China 6Department of Physics, University of California Berkeley, Berkeley CA 94720, USA 7Department of Computer Science, University of California Berkeley, Berkeley CA 94720, USA 8Xinjiang Astronomical Observatory, CAS, 150, Science 1-Street, Urumqi, Xinjiang 830011, China ABSTRACT The Search for Extraterrestrial Intelligence (SETI) attempts to address the possibility of the presence of technological civilizations beyond the Earth. Benefiting from high sensitivity, large sky coverage, an innovative feed cabin for China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST), we performed the SETI first observations with FAST’s newly commisioned 19-beam receiver; we report preliminary results in this paper. Using the data stream produced by the SERENDIP VI realtime multibeam SETI spectrometer installed at FAST, as well as its off-line data processing pipelines, we identify and remove four kinds of radio frequency interference(RFI): zone, broadband, multi-beam, and drifting, utilizing the Nebula SETI software pipeline combined with machine learning algorithms. After RFI mitigation, the Nebula pipeline identifies and ranks interesting narrow band candidate ET signals, scoring candidates by the number of times candidate signals have been seen at roughly the same sky position and same frequency, signal strength, proximity to a nearby star or object of interest, along with several other scoring criteria. We show four example candidates groups that demonstrate these RFI mitigation and candidate selection. This preliminary testing on FAST data helps to validate our SETI instrumentation techniques as well as our data processing pipeline.
<>
Dan Werthimer (UC Berkeley, University of Chinese Academy of Sciences) chat about the recent AAS Journal article on SETI observations with FAST, and where we can go from here given the published article. Article: "First SETI Observations with China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST)" "First SETI Observations with China's Five-hundred-meter Aperture Spherical Radio Telescope (FAST)" Dan's website: SETI@Home: BOINC - Compute for Science (including research on the SARS-CoV-2 virus): Citizen Science Projects In Your Online Astronomy Course: The intended audience for the AAS Journal Author Series is active researchers.
<>
May 25, 2022 The WOW signal has been tracked to a sun that is almost precisely like ours. But is this new discovery "NOT ALIENS" like everything else? What makes this signal so compelling? #space #nasa #aliens Support my channel! on Patreon If you want to reserve a pair of ANGRY SUNGLASSES, please send $20 US, Australian or Canadian to: The FINAL price is $40 US plus shipping"> Note: Merch now available directly in my channel! New paper on the intriguing origin of the WOW signal
A discussion of the most unsettling solutions to the fermi paradox. Skip the waitlist and invest in blue-chip art for the very first time by signing up for Masterworks: Purchase shares in great masterpieces from artists like Pablo Picasso, Banksy, Andy Warhol, and more. How Masterworks works: -Create your account with your traditional bank account -Pick major works of art to invest in or our new blue-chip diversified art portfolio -Identify investment amount -Hold shares in works by Picasso or trade them in our secondary marketplace See important Masterworks disclosures: 2:33 Beginning Where are all the aliens? Is there a solution to the fermi paradox? Joining John Michael Godier is Dr. Stephen Webb, astronomer and author of 'If the Universe Is Teeming with Aliens ... WHERE IS EVERYBODY? Seventy Five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life’. To discuss unsettling and spooky solutions to the Fermi Paradox : Stephen Webb's book Our Fermi Paradox playlist: Youtube Membership Podcast: Apple: More JMG Want to support the channel? : Patreon Follow us at other places! @JMGEventHorizon Music featured on Event Horizon Stellardrone Bandcamp Miguel Johnson Leerosevere bandcamp Aeriumambient Bandcamp FOOTAGE: NASA ESA/Hubble ESO - M.Kornmesser ESO - L.Calcada ESO - Jose Francisco Salgado (josefrancisco.org) NAOJ University of Warwick Goddard Visualization Studio Langley Research Center Pixabay
<>
SETI is the search for extraterrestrial intelligence, a passive listening experiment, while METI's goals are to be the sender hoping a signal reaches a similar or more advanced civilization. But is this a good idea? Who get's to decide who and what is sent, and what if sending those messages leads to our entire planet's destruction? Dan Werthimer is the Co-Founder and Chief Scientist of the SETI@Home Project at the University of California, Berkeley. He specializes in signal processing for radio astronomy. He has been doing SETI since 1979, and he runs the SERENDIP, Optical SETI, and CASPER projects. Youtube Membership Podcast: Apple: More JMG Want to support the channel? : Patreon Follow us at other places! @JMGEventHorizon Music featured on Event Horizon Stellardrone Bandcamp Miguel Johnson Leerosevere bandcamp Aeriumambient Bandcamp FOOTAGE: NASA ESA/Hubble ESO - M.Kornmesser ESO - L.Calcada ESO - Jose Francisco Salgado (josefrancisco.org) NAOJ University of Warwick Goddard Visualization Studio Langley Research Center Pixabay
<>
Learning science is about understanding complex systems and interactions among their entities. Telescopes are for observing objects that are far away, and microscopes are for exploring the tiniest objects. But what tools do we have for visualizing general patterns, processes, or relationships that can be defined in terms of compact mathematical models? Visualizing the unseeable can be a powerful teaching tool. SETI Institute affiliate Dr. Mojgan Haganikar has written a book, Visualizing Dynamic Systems, that categorizes the visualization skills needed for various types of scientific problems. With the emergence of new technologies, we have more powerful tools to visualize invisible concepts, complex systems, and large datasets by revealing patterns and inter-relations in new ways. Join the SETI Institute’s Pamela Harman as she explores what is possible with Haganikar. If you like science, support the SETI Institute! We're a non-profit research institution whose focus is understanding the nature and origins of life in the universe. Donate here: Learn more about the SETI Institute and stay up-to-date on awesome science: - Subscribe to our YouTube channel at / setiinstitute - Watch our streams over on Twitch at - Listen to our podcast, Big Picture Science - Subscribe to our newsletter -- Buy merchandise from Chop Shop - Don't forget to like and subscribe! Ring the bell for notifications of when we go live. #SETILive #DataVisualization #Science
NEW ASSUMPTIONS TO GUIDE SETI RESEARCH. S. P. Colombano, NASA Ames Research Center, MS 269-2, Moffett Field CA 94044, silvano.p.colombano@nasa.gov (PDF)