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Abstract:
Classical optical interferometery requires maintaining live, phase-stable links between telescope

stations. This requirement greatly adds to the cost of extending to long baseline separations,
and limits on baselines will in turn limit the achievable angular resolution. Here we describe a
novel type of two-photon interferometer for astrometry, which uses photons from two separate
sky sources and does not require an optical link between stations. Such techniques may
make large increases in interferometric baselines practical, even by orders of magnitude, with
corresponding improvement in astrometric precision benefiting numerous fields in astrophysics.
We tested a benchtop analogue version of the two-source interferometer and unambiguously
observe correlated behavior in detections of photon pairs from two thermal light sources, in
agreement with theoretical predictions. This work opens new possibilities in future astronomical
measurements.

1. Introduction and Basic Concepts

Classical optical Michelson interferometers collect photons from a sky source into two or more
sub-apertures, and these are then transported through optical links and brought into interference at
a common point. For a pair of sub-apertures separated by a baseline 𝐵 the measured interference
pattern is sensitive to features of the source with angular size 𝛿𝜃 ∼ 𝜆/𝐵, where 𝜆 is the photon
wavelength. The optical link between the stations must meet demanding requirements, with
lengths remaining stable to within a fraction of a wavelength. This makes the Michelson
interferometry expensive and difficult to extend to long baselines, and this in turn limits the
achievable resolution [1, 2].

The use of quantum optics to improve the precision of astronomical measurements is a
long-desired goal of both the optical and astronomical communities. In particular, the seminal
Gottesman-Jennewein-Croke (GJC) proposal [3] attracted attention as a way to build a quantum-
enhanced telescope, i.e. a very-long-baseline interferometer enabled by the use of quantum
optical effects. However, the GJC proposal is dependent on the use of quantum repeaters [4–7],
a technology which still requires a substantial amount of development, limiting practical
implementations of the technique. Alternatively, the proposed Stankus-Nomerotski-Slosar-
Vintskevich (SNSV) approach [8] relies on enhancements of the Hanbury Brown and Twiss (HBT)
effect. It simplifies requirements for an optical quantum-assisted astronomical measurement,
providing a practical pathway to achieve the goal of more precise astrometric measurements
for astronomical objects, and is based on the quantum interference phenomena, while avoiding
employment of quantum repeaters. Other theoretical techniques for improved resolution on
imaging the starlight were also introduced and some proof-of-principle demonstrations were
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successfully performed [9–13].
Here we describe a proof-of-principle experiment based on the SNSV scheme [8,14,15], shown

schematically in the left part of Figure 1. In brief, photons are collected from two sky sources in
two observing stations. Light from the sources is directed into beamsplitters for interference.
Correlations of photon detections between the four beamsplitter outputs are sensitive to the
relative phase difference of incoming photons from the two sources. From this the opening angle
between the sources can be determined, allowing for longer baselines when compared to the
classical interferometry, since it entirely removes the need for a physical optical path between the
stations. Therefore, such an approach could improve astrometric precision.

Fig. 1. (𝑎) Concept of the proposed Stankus-Nomerotski-Slosar-Vintskevich (SNSV)
two-photon interferometer, which interferes and detects photons, shown as flat waves,
from two astronomical sources. (𝑏) Equivalent scheme for the tabletop implementation.
The argon lamps 1 and 2 indicate the two ports associated with input spatial and
polarization modes. Each output detection port 𝐷1, 𝐷2, 𝐷3, and 𝐷4 corresponds to
detectors in two observation stations 𝐿 and 𝑅 in (a).

The measured coincidence rates of the outputs can be described by a second-order intensity
correlation function Γ 𝑗𝑘 which has the following simplified form:

Γ 𝑗𝑘 = 𝐴 + 𝐵 cos(𝛿 𝑗 − 𝛿𝑘 ) (1)

where A and B are the coefficients dependent on the photon polarization and coherence properties,
and 𝛿 𝑗 ,𝑘 are the phases for given modes.

We provide a detailed theoretical derivation of the intensity correlation function in quasi-
monochromatic approximation in the Supplement focusing on the polarization degrees of freedom,
and on the relationship between the mode indistinguishability and interference effects. There, we
predict that the output channels from Figure 1 should form pairs such that channels 1&3 should
be anti-correlated with channel pairs 1&4 and 2&3 but correlated with 2&4, while the channel
pair 1&4 would be correlated with the channel pair 2&3 but anti-correlated with 1&3 and 2&4.
We also predict that coincidences of the channel pairs 1&2 and 3&4 would have a stationary rate
without oscillations, a non-trivial correlation pattern.

The basis of the proposed technique relies on two phenomena: the Hanbury Brown-Twiss
(HBT) [16] and Hong-Ou-Mandel (HOM) [17] effects. We expect the two photons to bunch



within their coherence time as in the HBT effect, resulting in the HBT peaks in the time difference
distributions. In addition to this, we predict that the population of the HBT peak would depend
on the relative phase difference between the two photons. The HOM effect would play a role
when correlations between two outputs of the same beamsplitter are considered, leading to two
indistinguishable photons to coalesce at a beamsplitter output. Note that the presented scheme
has similarities with the Noh-Fougères-Mandel experiments [18–21] but, in contrast, it is focused
on the second-order correlation analysis, which describes coincidences between pairs of detectors.
The optical effects discussed above is a manifestation of the interference of two indistinguishable
photons. To be indistinguishable the photons must have similar frequencies and arrive at the
beamsplitters at the same time. These arguments establish requirements on the timing and
spectral resolution for the interferometer instrumentation [14, 22–24].

The SNSV technique has parallels with the GJC approach [3], which employs a path-entangled
source of single photons distributed between two observing stations, and its variations [25–30].
In the SNSV proposal, photons provided by the second thermal light source would replace
photons from a single photon source, typically a spontaneous parametric down conversion
(SPDC) source [31]. While an on-sky light source is inherently thermal, we note that this has
important practical advantages, compared to the above-mentioned quantum source, such as the
complete absence of the direct optical link between the stations and uniformity of instrumentation
for observations.

The two-photon interferometer presented here allows for precision improvement, in principle,
by orders of magnitude, which could benefit numerous fields in cosmology and astrophysics.
There are many scientific opportunities that would benefit from substantial improvements in
astrometric precision such as testing theories of gravity by direct imaging of black hole accretion
discs, precision parallax for the cosmic distance ladder, mapping microlensing events, peculiar
motions and dark matter; see Ref. [8] for a more comprehensive discussion. As a numerical
example, it was determined in Ref. [8] that a nominal precision on the order of 10 𝜇as on the
opening angle between two bright stars in a single night’s observation could be reached.

In the following, we start with discussing the benchtop experimental setup of the interferometer
in Section 2. We then focus on the methods and results in Section 3. Section 4 provides a
discussion of the results. Lastly, we present the conclusions and the future outlook in Section 5.
Detailed theoretical considerations and extended experimental setup description are presented in
the Supplement.

2. Experimental Setup

The experimental setup utilized in the measurements is shown in the right part of Figure 1. Two
argon lamps with isolated 794.82 nm spectral lines were used as sources of thermal photons.
The photons were directed to four 50:50 non-polarizing beamsplitters to arrange interference
as in the original scheme in the left part of Figure 1. The photon phases remained stable to the
environmental disturbances for extended periods of time and could be adjusted deterministically
with specialized phase shifters to study the phase dependence. The shifters were implemented
as small angle glass wedges, which can be moved laterally in fine steps. The four outputs of
the interferometer were instrumented with fast single-photon detectors. Two types of detectors
were used, the single photon avalanche detectors (SPAD) [32–34] and superconducting nanowire
single-photon detectors (SNSPD) [35–37], both with temporal resolution of the order of 100 ps.
The SPAD/SNSPD digital output signals were then read out by a TDC module. A detailed
description of the setup is provided in the Supplement.

We employed the following experimental procedure. Firstly, one of the phase shifters was
moved in small steps by a distance of about 0.45 mm over the duration of 15 minutes, which
corresponded to a shift by five wavelengths, followed by a pause of two minutes. Then, the
second phase shifter was moved in the same manner followed by another two-minute pause. The



total duration of the undisturbed measurement was about 35 minutes. The photon time-stamps of
four output channels were continuously logged on disk for post-processing. A variety of runs
were performed with two different detector types and varying polarizer configurations. These
configurations included experiments with unpolarized photons, when the polarizers were removed
from the beam paths, and experiments with different respective polarizations for the two lamps.

3. Methods and Results

The main goal of the analysis was to determine the dependence of two-photon correlations on the
relative phase of the photons. Algorithms were developed to condition the raw data by removing
the afterpulses, then to find coincidences of photon pairs in different channels to identify the
HBT peaks, and to determine the dependence of the peak population on the photon phase.

3.1. HBT Peaks

The HBT peaks appear in the time difference distributions of channel pairs due to the two-photon
interference yielding the photon bunching [16]. The characteristic shape of the distribution is
determined by the convolution of the corresponding photon coherence time due to the spectral
width of the argon line, and timing resolution [14]. We study this effect by analyzing the
distribution of photon detection time differences by combining various detector channels. The
analysis algorithm searches for pairs of single photons detected within a ± 20 ns window from
each other.

In previous work [14], we also determined that the timing resolution is the predominant
contribution to the HBT peak temporal width, so we model the HBT peaks with a normalized
𝑔 (2) autocorrelation function of this form:

𝑔 (2)
𝑖 𝑗 (Δ𝑡, 𝑡0, 𝑝) = 1 +𝑉𝐻𝐵𝑇 𝑒

− (Δ𝑡−𝑡0)2

2𝜎2 , 𝑝 ∈ {𝑉𝑉,𝑉𝐻}, 𝑖 𝑗 ∈ {12, 13, 14, 23, 24, 34}, (2)

where 𝑉𝐻𝐵𝑇 is the visibility of HBT effect, Δ𝑡 is the time difference with an offset 𝑡0, 𝜎 is the
standard deviation, 𝑝 is the polarization, and indices 𝑖 and 𝑗 are labeling the detector pairs; see
Eqs. (S10) - (S14) in the Supplement for the detailed derivation.

As expected, prominent peaks are seen for most of the six combinations of channels, as shown
in Figure 2. The left and right parts of Figure 2 show the HBT peaks with vertical-vertical, or
VV, and vertical-horizontal, or VH, as the orientation of the polarizers at the two inputs. Time
offsets in the peak positions are due to the varying paths in different channels including small
differences in the length of optical fibers. Note that for the VH case the interference is happening
for two photons from the same source and the VH photon pairs from the different sources do not
contribute. We discuss properties of the HBT peak distributions in Section 4.

3.2. Coincidence rates

As the first step, the HBT peaks were fit with a Gaussian function to determine the peak width 𝜎
and the central value of the entire 35 min dataset. Then the coincidence rate for channel pairs was
determined using two techniques. In the first, simple approach a window of ±1.5𝜎 around the
HBT peak central value was selected, where 𝜎 was taken from the corresponding fit of the peak.
Then the number of entries in this window in a predefined time bin, typically 10 - 30 sec, was
determined and plotted as a function of time as shown in Figure 3 for all six channel combinations
for the SNSPD data set with polarizers. The left and right parts of Figure 3 show, respectively,
the number of coincidences in the 20 sec time bins with VV and VH polarizer orientation at the
interferometer inputs. It is expected that these time trending plots will have oscillatory behavior
in the VV case due to the advance of the photon phase caused by the phase shifters as predicted in
Equation 1. We indeed observe this behavior but defer a detailed discussion of the main features
of these measurements to Section 4.



Fig. 2. Normalized coincidence count rates of two-photon detections as a function of
the time difference between them, Δt, for different output channel combinations and
different input polarizations, as labeled. The peak in each case indicates the enhanced
correlation between two photons, calibrating where simultaneous pairs will appear.
Left: results with both polarizers aligned vertically, called VV configuration. Right:
results with one polarizer aligned vertically and the other polarizer aligned horizontally,
called VH configuration. The parameters 𝑡0 and 𝜎 are the time offset and the Gaussian
fit width, respectively, according to Equation 2. The peaks are signatures of the Hanbury
Brown-Twiss (HBT) effect, appearing due to the photon bunching.

In a more sophisticated approach, the HBT peak in each predefined, sequential time bin was
fit with a Gaussian profile, only allowing to vary the peak amplitude and background detection
level. The peak center 𝑡0 and standard deviation 𝜎 of these fits were held constant at the values
determined from the initial fit of the overall HBT peak. Then the area under each of these Gauss
peaks within ±1.5𝜎 of the peak center was determined, effectively subtracting the background
detection rate, and plotted as a function of time. We show an example of such fit in Figure 4.
Mathematically this result can be described as the convolution of the second-order correlation
function with a filtering function, see Eqs.(S13) and (S14) in Supplement. All fits in this method
were made using LMFIT [38], which was also used to explicitly calculate uncertainties on the
parameter best-fit values. This technique should give better statistical accuracy since it uses more
statistics for the flat background and can also account for a slow drift of the flat background.

To determine the visibility and relative phase, the oscillatory behavior of trending plots due to
the phase evolution was fit with a cosine function:

Γ𝑖 𝑝𝑖 𝑗 𝑝 𝑗 (𝑡) = 〈𝐴〉𝑖 𝑝𝑖 𝑗 𝑝 𝑗 + 〈𝐵〉𝑖 𝑝𝑖 𝑗 𝑝 𝑗 cos
(
2𝜋
𝑇

𝑡 − Δ𝛿𝑖 𝑗

)
. (3)

where 〈𝐵〉 denotes the signal amplitude, 𝑇 is the characteristic period of slow phase adjustments
by the phase shifters, 𝑡 is the data time stamp, Δ𝛿𝑖 𝑗 ≡ 𝛿𝑖 − 𝛿 𝑗 is the constant relative phase, and
〈𝐴〉 is the background level. Labels 𝑝𝑖 ∈ {𝐻,𝑉} and 𝑝 𝑗 ∈ {𝐻,𝑉} are labels of polarization



Fig. 3. Number of two-photon detections within a ± 1.5𝜎 window about 𝑡0 of the HBT
peak in 20 sec time bins plotted versus time for the SNSPD data set with polarizers.
The time accounts for the real time during which the phase shifters were slowly moving
a preset distance corresponding to five wavelengths, then paused for two minutes,
then moved again for five wavelengths. The graphs show results for six combinations
of channel pairing, 1&2, 1&3, 1&4, 2&3, 2&4 and 3&4. Left: Results with VV
configuration of polarizers. Right: Results with VH configuration of polarizers. See
the text for discussion.

modes tailored to spatial modes 𝑖 and 𝑗 respectively. We define the corresponding visibility as:

V𝑂𝑆𝐶 =
〈𝐵〉𝑖 𝑝𝑖 𝑗 𝑝 𝑗

〈𝐴〉𝑖 𝑝𝑖 𝑗 𝑝 𝑗

. (4)

4. Analysis and Discussion

Oscillations in the trending plots were fit using a cosine function as explained above, from which
the main parameters were extracted. These parameters included the oscillation period, visibility
and phase. Out of these, the latter two, visibility and relative phase, are critical parameters,
unambiguously predicted by the theory.

4.1. Oscillations in Coincidence Rate

We show the coincidence rates for all channel combinations in Figure 3. As previously shown in
Equation 1, the channel pairs on the opposite interferometer arms (pairs 1&3, 1&4, 2&3, and 2&4)
are expected to oscillate in or out of phase, while channel pairs on the same interferometer arm
(pairs 1&2, 3&4) are not expected to oscillate. Since for the HOM effect only indistinguishable
photons are supposed to interfere, we do not expect any oscillations in the VH configuration of
polarizations.



Fig. 4. Two-photon coincidences count rates for the oscillations for channels 1&3 in
the SNSPD data set with with VV polarization fit to Equation 3. The coincidences
rates were determined fitting a Gaussian peak in each 10 sec time bin. Data points are
presented together with one standard deviation error bars.

Only the first five oscillation periods were used for the cosine fits in these results extracting
the relative phase, which was calculated with respect to the channel pair 1&4 phase, and the
visibility, calculated using Eq. 4. This analysis was performed for several datasets: VV polarized
and unpolarized datasets with SNSPD detectors, and unpolarized dataset with SPAD detectors.
We summarize the measured visibility for the cross-station channel combinations and for the
datasets in the top part of Figure 5 and the relative phases, in radians, in the bottom part of
Figure 5. The measured parameters all behave as expected. As can be seen the visibility was
higher for the polarized dataset, as expected, by approximately a factor of two compared to the
unpolarized dataset. In the unpolarized case, the visibility of oscillations for the SPAD detectors
were consistently smaller compared to the visibility of the peaks for the SNSPD detectors. This
can be explained by the inferior timing resolution of SPAD detectors.

We also checked the behavior of the interferometer for varying polarizations of the two beams.
Figure 6 shows the visibilities of two-photon detections as a function of polarization angle, for
channel pairs 1&3, 1&4, 2&3, and 2&4. Here, one input polarization angle was varied in 22.5◦
increments from 0◦ to 180◦ starting from either VV or VH configuration, while the other polarizer
was not moved. The dependence on the relative angle for the two polarizations was changing in
anti-phase for these two cases, as expected. We compare the experimental data to the theoretical
predictions, as in Eq. 5, derived in Supplement, and find a good agreement.

𝑉𝑉𝑉 (𝜃) = 𝑟𝑉𝑉 sin2 (𝜃)
1 + 𝑟𝑉𝑉 sin2 𝜃 + 𝑟2

𝑉𝑉 sin4 𝜃 + 𝑟2
𝐻𝑉 cos4 𝜃 + 𝑟𝐻𝑉 cos2 𝜃 + 𝑟𝐻𝑉 𝑟𝑉𝑉 sin2 𝜃 cos2 𝜃

𝑉𝑉 𝐻 (𝜃) = 𝑟𝐻𝐻 cos2 (𝜃)
1 + 𝑟𝐻𝐻 cos2 𝜃 + 𝑟2

𝐻𝐻 cos4 𝜃 + 𝑟2
𝑉 𝐻 sin4 𝜃 + 𝑟𝑉 𝐻 sin2 𝜃 + 𝑟𝐻𝐻 𝑟𝑉 𝐻 sin2 𝜃 cos2 𝜃

, (5)

where 𝑟𝑖 𝑗 are the normalized rates defined in Supplement.

4.2. HBT peak visibility, cancellation of HOM and HBT effects

As already discussed in Section 3 the HBT peaks were fit with a Gaussian function. The resulting
timing resolution (𝜎) was found to be equal to 280 ps and 140 ps, respectively for SPAD and
SNSPD detectors. This is in agreement with expected timing resolution of those detectors
assuming a time difference measurement for two independent photons. The HBT peak visibility



Fig. 5. Top: Visibility of oscillations for the two-photon coincidences count rates.
Bottom: Relative phases, in radians, calculated with respect to the channel pair 1&4
phase. Colors correspond to different datasets. Pol and noPol are the VV poparized
and unpolarized datasets, respectively. Data points are presented together with one
standard deviation error bars.

was introduced in Eq. 2. A graph summarizing the visibilities for all combinations of channel
pairs in the main datasets is shown in Figure 7. Similarly to the oscillation visibility, the HBT
visibility was significantly higher for the polarized case, decreasing for the unpolarized case and
for the SPAD detectors, which have worse timing resolution.

We also note that the HBT peak visibility is almost zero for the 1&2 and 3&4 pair combinations
in the VV configuration. These particular channels evaluate coincidences of two photons exiting
the two opposite sides of the same beamsplitter so their coincidence rate will have a dip due to
the Hong-Ou-Mandel (HOM) effect. This will cancel out the photon bunching peak due to the
HBT effect. However, the results in Figures 2 and 7 show it’s not an exact cancellation, which is
likely due to the non-ideal equalization of the interferometer arms, also a valid explanation for
the spread of visibility for the middle four channel combinations in Figures 5 and 7.

5. Conclusions and Outlook

In this work we implemented a proof-of-principle demonstration of the SNSV proposal for
quantum-assisted astronomy [8] and described bench-top experiments with a two-photon in-
terferometer. The results, in particular, the observed phase dependence, confirm the predicted
functionality of the proposed instrument, suggesting that it is a viable experimental approach that
can improve the astrometric precision.

The next steps in the exploration of the approach would be observations of on-sky light sources.
We note that the phase shifting performed in the above experiments and corresponding oscillations
in the coincidence rates are directly analogous to the Earth rotation fringe shifting [39]. Due to



Fig. 6. Visibility of two-photon detections as a function of polarization angle, for
channel pairs 1&3, 1&4, 2&3, and 2&4. Here, one input polarization angle was varied
in 22.5◦ increments from 0◦ to 180◦ starting from either VV or VH configuration, while
the other polarizer was not moved. Different colors refer to different configurations as
indicated. Data points are presented together with one standard deviation error bars.
The measured experimental data is fitted by Eq. 5. To fit the results we added to the fit
function a small constant offset, which described the accidental coincidences counts.

Fig. 7. Visibility of the HBT peaks presented in Figure 2 for various datasets. Colors
correspond to different datasets. Pol and noPol are the VV poparized and unpolarized
datasets, respectively. Data points are presented together with one standard deviation
error bars.

Earth’s rotation, the effective baseline between the two stations change, which induces changes
in the interference patterns, in particular, in the frequency of corresponding fringe oscillations.
The frequency value is predicted in [8] to be proportional to the opening angle between the
stars. The uncertainty of the fringe rate has more favorable scaling with observation period than
simple photon statistic methods, so it can be considered a promising observable for the quantum
astrometry approach.

The star spectra are typically broadband, so another obvious extension of the technique is
spectroscopic binning, which would allow us to estimate the observables in numerous spectral



bins. Each bin would act as an independent experiment, so the sensitivity of the interferometer
would improve as

√
𝑁 , where 𝑁 is the number of spectral bins. The sensitivity also improves

with a larger number of stations and better timing resolution, as discussed in Ref. [8].
Though we operate here with the thermal states of light, which have the classical Gaussian

quasiprobability distribution, we consider a quantum description of these phenomena, as in
this work, to be very instructive. It emphasizes the role of mode (or path) indistinguishability
in the quantum interference phenomena. Moreover, this description can be extended further
by employing the Quantum Continuous Variable (CV) formalism [40]. The CV formalism
will play an important role in expanding the presented technique to multiple observing stations
assisted by auxiliary ground-based quantum states such as squeezed states and non-trivial
quantum channels [41–46], providing novel opportunities in astronomy for extraction of valuable
information. At the same time, the complexity of analytical descriptions and data processing
would grow tremendously with an increased number of stations and auxiliary quantum states
involved in the measurements, including entangled ones [3, 25, 26], so an important future
research goal is to provide a theoretical description of such expansions based on both entities, the
Gaussian states and quantum channels, powered by machine-learning methods [47, 48].

In summary, we built and characterized a tabletop prototype of a two-photon interferometer,
which could improve the astrometric precision by orders of magnitude, by means of enabling
extra long baselines between observing stations. The implemented interferometer allowed us to
test the important features of the SNSV proposal, in particular to demonstrate that the relative
phase of two photons from two independent thermal sources has a direct effect on their bunching
due to the HBT effect. The approach demonstrated here is technically feasible with existing
technologies of single photon detection [14,39] and allows us to move towards measurements
with on-sky sources. This work represents a major step towards quantum-assisted astronomy.
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Towards Quantum Telescopes:
Demonstration of a Two-Photon
Interferometer for Quantum-Assisted
Astronomy — Supplement

1. EXPERIMENTAL SETUP AND METHODS

The experimental setup utilized in the measurements is shown in the right part of Figure 1 in the
main text. Here we provide a detailed description of the setup, which includes two argon lamps,
standard optical elements, single-photon detectors, and time digital converter (TDC).

Newport 6030 Argon spectral calibration lamps operated with 10 mA DC current, acting
as quasi-thermal sources, were used as simulated starlight. Photons from these lamps passed
through narrow band filters with a center wavelength of 794.9 nm and 1 nm FWHM to isolate
the 794.82 nm spectral line. Then the photons were coupled into single-mode fibers and directed
to linear polarizers and to 50:50 non-polarizing beamsplitters.

The reflected light from the beamsplitters was then passed through motor-controlled phase
shifters, made of glass wedges, which can be moved laterally to the beam direction. The wedge
angle is 1◦ and the glass refractive index around the wavelength of interest is 1.51, which trans-
lates to the phase advance of about 9 nm per one micron motor step. Following that, the beam
was directed into another beamsplitter, for mixing with photons from the opposite argon lamp,
arriving from another beamsplitter through the transmitted path. The light from beamsplitter’s
output was then coupled into single-mode fibers and read out by detectors with single-photon
sensitivity.

Two types of detectors were used, single-photon avalanche detectors (SPAD) and supercon-
ducting nanowire single-photon detectors (SNSPD). SPADs are silicon-based devices with inter-
nal amplification in the diode junction. They produce fast pulses operating with single photon
sensitivity [1–3]. SPAD devices are capable of achieving timing resolution as good as 10 ps for
single channel devices. These devices also have good scalability, with multichannel imagers al-
ready reported [1, 4]. We used the Thorlabs SPDMA devices with photon detection efficiency of
47% for 795 nm and timing resolution of 200 ps (rms).

SNSPD is a technology with excellent quantum efficiency and time resolution. We utilized a
commercial unit (SingleQuantum EOS), which provides four infrared-sensitive channels made
of serpentine wires kept at superconducting temperatures by a helium compressor. Voltage sig-
nals are induced in the detection circuit when a photon deposits its energy in the vicinity of the
wire and momentarily breaks the superconductivity [5–7]. The SNSPDs used for the measure-
ments here had timing resolution of 100 ps (rms). The SPAD/SNSPD digital output signals are
then read out by a quTAG TDC module, which timestamps individual photons with 7 ps timing
resolution.

The interferometer was aligned using a 780 nm continuous-wave (CW) laser with resulting
optical throughput (up to before the detectors) for the input flux of about 50%. Special care was
taken to equalize the rates from two lamps and between the four output channels. Typical single
photon rates for the argon lamps operating at full power with SNSPD detectors were about 200-
400 k counts per second per channel depending on the configuration.

To verify the phase stability we reconfigured the setup to a single photon interferometer by
sending one of the argon lamp beams to a 50:50 beamsplitter and feeding the two resulting
beams to the two inputs of the interferometer. In this case, the output rates directly depend on
the phase difference between the two interferometer arms since it behaves as a classical Mach-
Zehnder interferometer. This allowed us to determine that the phase stability was very good, of
the order of 10 hours so much longer than the duration of our experiments.

We also describe here an algorithm, which was deployed to remove the afterpulses to avoid
the double-counting of single photon hits. Afterpulses is a detector effect that results in the
appearance of pulses only after a short time following the primary pulse [8]. For our measure-
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ments, we saw the afterpulses only for the SNSPD signals. It is likely that their origin was in
the SNSPD frontend electronics rather than in the nanowire sensor itself. We studied the SNSPD
afterpulsing in detail in our previous work [9]. During the initial analysis steps the afterpulses
were removed by ignoring any hits appearing closer than 30 ns to the original pulse [9]. Similar
studies were performed for SPAD detectors with the conclusion that the SPAD digital signals at
the output of the device did not have afterpulses.

2. THEORETICAL CONSIDERATIONS AND DERIVATIONS

The theoretical description for the interferometer setup in Figure 1 in the main text can be de-
rived employing the Glauber – Sudarshan P-representation [10, 11], which provides a natural
description of transformations in the beamsplitters and phase shifters of a joint state produced
by thermal sources. We believe that the quantum description of our observations is very instruc-
tive as it provides a clear link between the mode indistinguishability and quantum interference
phenomena through alternative paths in quantum mechanics [12, 13].

In accordance with the output channel numbering in the right part of Figure 1 in the main text,
the joint quantum state of light is described as follows [11]:

$̂in = |0〉 〈0|1,in ⊗ [$̂2,H ⊗ $̂2,V ]in ⊗ |0〉 〈0|3,in ⊗ [$̂4,H ⊗ $̂4,V ]in, (S1)

where the indices H, V correspond to the horizontal and vertical polarization degrees of freedom
for the resulting thermal states of spatial modes characterized by indices 2, 4 after transformation
via polarizers. Note, to avoid cumbersome expressions we labeled all input modes by the label
in. |0〉 〈0|1, |0〉 〈0|3 are the vacuum state of spatial modes 1, 3. It is assumed that the average
photon occupation number in a given spatial-frequency mode m, ω after polarization filter is
equal to:

〈n̂m(ω)〉 = 〈â†
m,H(ω)âm,H(ω)〉+ 〈â†

m,V(ω)âm,V(ω)〉 = nm,H(ω) cos2(θm) + nm,V(ω) sin2(θm),
(S2)

where nm,H(ω) and nm,V(ω) are the average photon occupation numbers in horizontal (H) and
vertical (V) polarization modes respectively and a given spatial mode m [13]. The P - represen-
tation yields the form of a multimode joint initial state in (S1) as:

$̂in =
∫

d2α2d2α4P (α2H , α2V) P (α4H , α4V)

|0〉 〈0|1,in ⊗ [|α2H , α2V〉 〈α2H , α2V |]in ⊗ |0〉 〈0|3,in ⊗ [|α4H , α4V〉 〈α4H , α4V |]in, (S3)

where the state |α〉 represents a short notation for the multimode coherent state (for polarization
and frequency modes) such that âmp(ω) |α〉 = αmp(ω) |α〉 , mp ∈ {mH, mV}, m ∈ {1, 2, 3, 4}
in the above. We denoted a bosonic annihilation operator of particular mode as âpm(ω). The
corresponding P-function of the thermal state with spatial modes labelled by indices m = 2 & 4
have the following form:

P (αmH , αmV) = ∏
ω,ω′

1
π2nmH(ω)nmV(ω

′ )
e−

|αmH (ω)|2
nmH (ω) e

− |αmV (ω
′
)|2

nmV (ω
′
) , m ∈ {2, 4}. (S4)

The P - representation is a useful tool for the theoretical description, especially in the case of ther-
mal statistics of quantum states owing to a significant simplification of expressions and direct
correspondence to the classical optics. Note that there is a one-to-one correspondence between
the input modes and operators describing the quantum states and observables related directly
to the selected modes. The initial state of light is transformed via action of the unitary quantum
channel describing the action of nonpolarizing beamsplitters (Û) and phase shifters (V̂):

$̂out = (Û12 ⊗ Û34)V̂3V̂1(Û14 ⊗ Û23)$̂in[(Û12 ⊗ Û34)V̂3V̂1(Û14 ⊗ Û23)]
†. (S5)

The action of this unitary channel can be specified by the transformation:

âm

âk


 = Ûmk


âin

m

âin
k


 =




1√
2

1√
2

− 1√
2

1√
2




 âin

m

âin
k ,


 (S6)
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where m and k are the corresponding spatial modes. The following equalities hold:

V̂(δ)mÛmk |αmp〉m,in |αkp〉k,in = |eiδ αmp + αkp√
2

〉
m
|
−αmp + αkp√

2
〉

k
, p ∈ {H, V} (S7)

V̂(δ)mÛmk |αmH(V)〉m,in
|αkV(H)〉k,in

=

= |eiδ αmH(V)√
2
〉

m
|eiδ αkV(H)√

2
〉

m
|−

αmH(V)√
2
〉

k
|
αkV(H)√

2
〉

k
(S8)

Thus, taking into account Eq. (S3) - Eq. (S7) the resulting state (S5) can be rewritten as:

$̂out =
∫

d2α2d2α4P (α2) P (α4)
(
|α4 + eiδ1 α2

2
〉

1 1
〈α4 + eiδ1 α2

2
|
)
⊗
(
|α4 + eiδ2 α2

2
〉

2 2
〈α4 + eiδ2 α2

2
|
)
⊗

(
|α4 + eiδ3 α2

2
〉

3 3
〈α4 + eiδ3 α2

2
|
)
⊗
(
|α4 + eiδ4 α2

2
〉

4 4
〈α4 + eiδ4 α2

2
|
)

, (S9)

where δ1,3 = (∆2,3 − ∆1,4)ω/c; δ2,4 = (∆2,3 − ∆1,4)ω/c + π, ∆j - a phase shift along direction of
a given mode j ∈ {1, 2, 3, 4}. For the sake of notation simplicity, we absorbed the polarisation
degrees of freedom assuming |α〉 ≡ |α〉H |α〉V .

In our experiments, we measure the coincidence rates between different pairs of detectors that
register light in different spatial modes. Theoretically, such measurements are described by the
intensity (second-order) correlation function Γjp,kq(∆t) with spatial modes labeled with j 6= k ∈
{1, 2, 3, 4} and polarization modes labeled with {p, q} ∈ {H, V}. For the degree of second-order
coherence the corresponding operator Ôjp,kq(∆t) describing the intensity correlations reads:

Γjp,kq(∆t) = tr
(

Ô(∆t)jk $̂out

)
= tr

(
~̂E†

jp(t)~̂E
†
kq(t + ∆t)~̂Ekq(t + ∆t)~̂Ejp(t)$̂out

)
, (S10)

where tr is the full trace operation. The normalized correlation function g(2)jp,kq(∆t) (also com-

monly named as g(2)-factor or normalized correlation function) can be expressed as follows:

g(2)jp,kq(∆t) =
Γjp,kq(∆t)

tr
(

$̂out~̂E†
jp(t)~̂Ejp(t)

)
tr
(

$̂out~̂E†
kq(t + ∆t)~̂Ekq(t + ∆t)

) (S11)

The detectors are labeled in accordance with corresponding spatial modes. One can use a stan-
dard one-dimensional expansion of field operators in the time-frequency domain:

~̂Em(t) =
∫

âHm(ω)~eHe−iωtdω +
∫

âVm(ω)~eVe−iωtdω (S12)

Note that if one assumes that the polarization degree of freedom is not changing and the
same is true for all spatial modes, one can omit indices p, q for simplicity. To analyze specific
measurements results one can utilize several simplifications in Eq. (S10) and Eq. (S11). In Section
3.1 of the main text we analyzed the HBT peaks for setups with two different configurations of
polarization modes VV and VH. For this cases Eq. (S11) yields:

ΓjV,kV(∆t, t) = 2n2
4V f4V(jk, ∆t) + 2n2

4V f2V(jk, ∆t) +

+2n4Vn2V
[
1 + f̃4V(jk, ∆t) f̃2V(jk, ∆t) cos (δij(t))

]
(S13)

ΓjV,kH(∆t, t) = 2n2
4V f4V(∆t) + 2n2

2H f2H(∆t) + 2n4Vn2H , (S14)

where the phase factor δij(t) = (δi − δj) − 2πt
T has contributions from constant phase shifts

(δi − δj) and a slowly varying phase shift with period T induced with the phase shifters, see
Fig.1 in the main text. As usual nmp is the average photon number in input modes. Functions
fmp(jk, ∆t), m ∈ {2, 4}, p ∈ {H, V} are defined by the source spectrum and overall phase shifts
between the input sources (2, 4) and pairs of detectors, labeled by i, j. We use the Gaussian

spectrum to model such functions: fmp(jk, ∆t) = Cmpe−
(tjk−∆t)2

2σ2 . In Sec.3.2 of the main text we
analyze the oscillation of coincidence rates by estimating ΓjV,kV(∆t, t) and ΓjV,kH(∆t, t) within

3



a specific coincidence time window near the peak maximum and picking a corresponding time
bin size. This is equivalent to averaging in the time domain; we can replace ΓjV,kV(H)(∆t, t) with
averaged functions 〈ΓjV,kV(H)(∆t, t)〉. In this case the functions fmp(jk, ∆t) can be replaced by
constants and the resulting 〈ΓjV,kV(H)(∆t, t)〉 gets the following functional form 〈Γipi jpj (t)〉 =
〈A〉ipi jpj , + 〈B〉ipi jpj cos

(
2π
T t− ∆δij

)
. We denoted here labels of polarization as pi and pi associ-

ated with spatial modes i and j.
Note that the quantum interference effects (and consequently oscillation pattern governed

by cos (δij(t)) = cos ((δi − δj)− 2πt
T )) vanish if modes produced by sources are distinguishable

(e.g. pi = V and pj = H), which we see clearly from Eqs.(S13) and (S14). We emphasize the
importance of mode indistinguishability focusing on the polarization degree of freedom in the
derivation below.

Let us explicitly calculate Eq. (S11) within the quasi-monochromatic approximation ∆ωTres �
ω0 and by assuming ∆ωTres � 1, where Tres is the detector temporal resolution. Substituting
Eq. (S9) and Eq. (S10) in Eq. (S11) and taking it to the limit ∆ω −→ 0 we obtain:

g(2)jk = 2
n2

4H + n2
2H + n2

4V + n2
2V + n4Hn2H + n4Vn2V + (n4H + n2H)(n4V + n2V)

(n4H + n2H + n4V + n2V)
2 +

+2
n4Hn2H + n4Vn2V

(n4H + n2H + n4V + n2V)
2 cos

(
δj − δk

)
. (S15)

Let us also explicitly write down the interference visibility Vtheory:

Vtheory =

max
δj ,δk

(g(2)jk )−min
δj ,δk

(g(2)jk )

max
δj ,δk

(g(2)jk ) + min
δj ,δk

(g(2)jk )
=

=
n4Hn2H + n4Vn2V

n2
4H + n2

2H + n2
4V + n2

2V + n4Hn2H + n4Vn2V + (n4H + n2H)(n4V + n2V)
. (S16)

The limit ∆ω −→ 0 allows us to exclude dependence on ∆t and concentrate on the polarization
degree of freedom.

Equation Eq. (S16) is important to understand the results. The quantum interference vanishes
(Vtheory = 0) when the polarization modes from the sources are different so the photons from
the two sources are distinguishable: n4H = 0, n2H 6= 0, n4V 6= 0, n2V = 0; corresponding to the
right part of Figure 3 in the main text. However, the HBT effect still holds (for both modes V
and H) independently for each pair of detectors 1&2, 1&3, 1&4, 2&3, 2&4, 3&4, see the right part
of Figure 2 in the main text.

Alternatively, if n4H = 0, n2H = 0, n4V 6= 0, n2V 6= 0 the visibility Vtheory 6= 0 and the os-
cillatory behaviour is restored due to the mode indistinguishability. Note that if n4V ≈ n2V
we observe a destructive interference for the combinations 1&2 and 3&4 due to cos (δ2 − δ1) =
cos (δ3 − δ4) = cos (π) = −1. Not perfect cancellation may happen due to only approximate
equality n4V ≈ n2V and possible imperfections of photodetection.

Finally, let us analyze the visibility of oscillatory effects in coincidence detection as a function
of polarization angle θ, presented in Figure 6 in the main text together with theoretical fits. Below
we consider two specific cases: vertical polarization of the first lamp: n4H = 0, n4V 6= 0 and
varying polarization angle for the second lamp, measured from the initial vertical position, and
the opposite case with horizontal polarization of the first lamp. Theoretical functions can be
derived from Eq. (S16). We can rewrite expression for visibility by using explicit expressions
n2H = n2H cos2 θ, n2V = n2V sin2 θ in Eq. (S16) and dividing it by n4V in the VV case and by n4H
in the VH case.

VVV(θ) = Vtheory(θ)|n4V 6=0
n4H=0 =

rVV sin2(θ)

1 + rVV sin2 θ + r2
VV sin4 θ + r2

HV cos4 θ + rHV cos2 θ + rHVrVV sin2 θ cos2 θ
(S17)

VVH(θ) = Vtheory(θ)|n4V=0
n4H 6=0 =

rHH cos2(θ)

1 + rHH cos2 θ + r2
HH cos4 θ + r2

VH sin4 θ + rVH sin2 θ + rHHrVH sin2 θ cos2 θ
, (S18)

4



where θ = θ0 +∆θ and θ0 is an initial polarizer position; ∆θ is the polarization angle shift; we also
denoted rVV = n2V/n4V , rHV = n2H/n4V and rHH = n2H/n4H , rVH = n2V/n4H respectively
for VV and VH configurations. From Figure 6 in the main text, it is clear that the theoretical fits
are in good agreement with the experimental data.
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