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An error in the code used to plot Figure 3 in the original paper caused the limiting magnitudes to appear too faint. This is
corrected in Figure 1 in this erratum. Although the original caption is correct, paragraphs 4 and 5 of Section 2.3 need to be
changed as follows.

“For the Sun-like star, a ÅR4 planet produces a transit depth of 0.13%. The limiting magnitude for transits to be detectable
is about =I 11.4C . This also corresponds to »K 10.6s and a maximum distance of 290pc, assuming no extinction.

For the M dwarf with =T 3200eff K, we assume  = R R0.155 , based on the Dartmouth Stellar Evolution Database
(Dotter et al. 2008) for solar metallicity and an age of 1Gyr. Since Dressing & Charbonneau (2015) found that M dwarfs very
rarely have close-in planets larger than 3R⊕, we consider a planet of this size rather than 4R⊕. At 3R⊕, and the transit depth is
3.1% and the limiting apparent magnitude for detection is =I 15.2C . This corresponds to »K 13s and a maximum distance of
120 pc, assuming no extinction.”

Paragraph 7 of Section 2.3 should also be changed as follows.
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Figure 1. Limiting magnitude for planet detection as a function of stellar radius for three planetary radii. Here, detection is defined as achieving a signal-to-noise ratio
greater than 7.3 from 6hours of integration time during transits. The noise model includes read noise and photon-counting noise from the target star and a typical level
of zodiacal light. While the TESS bandpass is similar to the IC band, the sensitivity curve is flatter in Ks magnitudes.
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“To summarize, TESS is sensitive to small planets around Sun-like stars within 300pc. For M dwarfs, the search distance
is 100pc.”
The star counts listed in Section 3.1 of the original paper were based on an earlier version of the star catalog instead of the
published one.

The “bright catalog” that is described actually has ´1.58 108 stars, and not ´2.11 107 stars as written in the text. The
“intermediate catalog” actually has ´1.81 109 stars, not ´1.19 109. The “faint catalog” actually has ´6.18 109 stars,
not ´7.37 109.
An error in the code used to plot Figure 18 in the original paper led to an overstatement of the number of super-Earths detected
only in the full-frame images. The column should show a total of 510 planets, and not 1400, that are detectable among both the
full-frame images and the target stars. The number of super-Earths detectable among the target stars alone (486±22) remains
unchanged. As explained correctly in the text, the target stars are preselected to include nearly all of the stars that offer
prospects for detecting such small planets with TESS.

The error arose when grouping the detected planets by radius within the plotting code. The corrected bar plot, with its
unchanged caption, is found in Figure 2. The text of the paper, and the tables that were distributed electronically, were not
affected by this error in the figure.

We are very grateful to Luke Bouma and Hans Deeg for bringing these errors to our attention.

Figure 2. Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the ´2 105 target stars that are observed with 2
minutes time sampling as well as stars in the full-frame images that are observed with 30 minutes sampling. The statistical error from Poisson fluctuations and the input planet
occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see the text).
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ABSTRACT

The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a
wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets
that TESS will detect along with the EB stars that produce false-positive photometric signals. The predictions are
based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from
Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS
will find approximately 1700 transiting planets from 2 105´ pre-selected target stars. This includes 556 planets
smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs.
Approximately 130 of the R R2< Å planets will have host stars brighter than K 9s = . Approximately 48 of the
planets with R R2< Å lie within or near the habitable zone ( S S0.2 2< <Å ); between 2 and 7 such planets have
host stars brighter than K 9s = . We also expect approximately 1100 detections of planets with radii 2–4 RÅ, and 67
planets larger than 4 RÅ. Additional planets larger than 2 RÅ can be detected around stars that are not among the
pre-selected target stars, because TESS will also deliver full-frame images at a 30-minute cadence. The planet
detections are accompanied by over 1000 astrophysical false positives. We discuss how TESS data and ground-
based observations can be used to distinguish the false positives from genuine planets. We also discuss the
prospects for follow-up observations to measure the masses and atmospheres of the TESS planets.

Key words: planets and satellites: detection – space vehicles: instruments – surveys
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1. INTRODUCTION

Transiting exoplanets offer opportunities to explore the
compositions, atmospheres, and orbital dynamics of planets
beyond the solar system. The Transiting Exoplanet Survey
Satellite (TESS) is a NASA-sponsored Explorer mission that
will monitor several hundred thousand Sun-like and smaller
stars for transiting planets (Ricker et al. 2015). The brightest
dwarf stars in the sky are the highest priority for TESS because
they facilitate follow-up measurements of the planet masses
and atmospheres. After launch (currently scheduled for late
2017), TESS will spend two years observing nearly the entire
sky using four wide-field cameras.

Previous wide-field transit surveys, such as HAT (Bakos
et al. 2004), TrES (Alonso et al. 2004), XO (McCullough et al.
2005), WASP (Pollacco et al. 2006), and KELT (Pepper et al.
2007), have been conducted with ground-based telescopes.
These surveys have been very successful in finding giant
planets that orbit bright host stars, but they have struggled to
find planets smaller than Neptune because of the obstacles to
achieving fine photometric precision beneath the Earthʼs
atmosphere. In contrast, the space missions CoRoT (Auvergne
et al. 2009) and Kepler (Borucki et al. 2010) achieved
outstanding photometric precision, but targeted relatively faint
stars within restricted regions of the sky. This has made it

difficult to measure the masses or study the atmospheres of the
small planets discovered by CoRoT and Kepler, except for the
brightest systems in each sample.
TESS aims to combine the merits of wide-field surveys with

the fine photometric precision and long intervals of unin-
terrupted observation that are possible in a space mission.
Compared to Kepler, TESS will examine stars that are generally
brighter by 3 mag over a solid angle that is larger by a factor of
400. However, in order to complete the survey within the
primary mission duration of 2 years, TESS will not monitor
stars for nearly as long as Kepler did; it will mainly be sensitive
to planets with periods 20 days.
This paper presents simulations of the population of

transiting planets that TESS will detect and the population of
eclipsing binary (EB) stars that produce photometric signals
resembling those of transiting planets. These simulations were
originally developed to inform the design of the mission. They
are also being used to plan the campaign of ground-based
observations required to distinguish planets from EBs as well
as follow-up measurements of planetary masses and atmo-
spheres. In the future, these simulations could inform proposals
for an extended mission.
Pioneering work on calculating the yield of all-sky transit

surveys was carried out by Pepper et al. (2003). Subsequently,
Beatty & Gaudi (2008) simulated in greater detail the planet
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yield for several ground-based and space-based transit surveys,
but not including TESS (which had not yet been selected by
NASA). Deming et al. (2009) considered TESS specifically,
but those calculations were based on an earlier design for the
mission with different choices for the observing interval and
duty cycle, the number of cameras and collecting area, and
other key parameters. Furthermore, the occurrence rates of
planets have since been clarified by the Kepler mission. We
have therefore built our simulation from scratch rather than
adapting this previous work.

We have organized this paper as follows.
Section 2 provides an overview of TESS and the types of

stars that will be searched for transiting planets. Sections 3–5
present our model for the relevant stellar and planetary
populations. Section 3 describes the properties and luminosity
function (LF) of the stars in our simulation. Section 4 describes
the assignment of transiting planets and EB companions to
these stars. Section 5 combines these results to forecast the
properties of the brightest transiting planet systems on the sky,
regardless of how they might be detected. This information
helps to set expectations for the yield of any wide-field transit
survey, and for the properties of the most favorable transiting
planets for characterization. Sections 6–8 then describe the
detection of the simulated planets specifically with TESS.
Section 6 details our model for the photometric performance of
the TESS cameras. Section 7 presents the simulated detections
of planets and their properties. Section 7 also shows the
detections of astrophysical false-positives, and Section 8
investigates the possibilities for distinguishing them from
planets using TESS data and supplementary data from ground-
based telescopes. Finally, Section 9 discusses the prospects for
following up the TESS planets to study their masses and
atmospheres.

2. BRIEF OVERVIEW OF TESS

TESS employs four refractive cameras, each with a field of
view of 24° × 24°, imaged by an array of four 2 k × 2 k CCD.
This gives a pixel scale of 21″. 1. The four camera fields are
stacked vertically to create a combined field that is 24° wide
and 96° tall, captured by 64Mpixels. Each camera has an
entrance pupil diameter of 105 mm and an effective collecting
area of 69 cm2 after accounting for transmissive losses in the
lenses and their coatings. (The relative spectral response
functions of the camera and CCD will be considered
separately.)

Each camera will acquire a new image every 2 s. The readout
noise, for which the design goal has an rms level of 10 e- pix−1,
is incurred with every 2 s image. This places the read noise at
or below the zodiacal photon-counting noise, which ranges
from 10–16 e- pix−1 rms for a 2 s integration time (see
Section 6.4.1).

Due to limitations in data storage and telemetry, it will not be
possible to transmit all the 2 s images back to Earth. Instead,
TESS will stack these images to create two basic data products
with longer effective exposure times. First, the subset of pixels
that surround several hundred thousand pre-selected “target
stars” will be stacked at a 2-minute cadence. Second, the full-
frame images (“FFIs”) will be stacked at a 30-minute cadence.
The selection of the target stars will be based on the
detectability of small planets; this is described further in
Section 6.7. The FFIs will allow a wider range of stars to be
searched for transits, and they will also enable many other

scientific investigations that require time-domain photometry of
bright sources.

2.1. Sky Coverage

TESS will observe from a 13.7 days elliptical orbit around
the Earth. Over 2 years, it will observe the sky using 26
pointings. Two spacecraft orbits (27.4 days) are devoted to
each pointing. Because the cameras are fixed to the spacecraft,
the spacecraft must re-orient for every pointing. The pointings
are spaced equally in ecliptic longitude, and they are positioned
such that the top camera is centered on the ecliptic pole and the
bottom camera reaches down to an ecliptic latitude of 6◦.
Figure 1 shows the hemispherical coverage resulting from this
arrangement.

2.2. Spectral Response

The spectral response of the TESS cameras is limited at its
red end by the quantum efficiency of the CCDs. TESS employs
the MIT Lincoln Laboratory CCID-80 detector, a back-
illuminated CCD with a depletion depth of 100 μm. This
relatively deep depletion allows for sensitivity to wavelengths
slightly longer than 1000 nm.
At its blue end, the spectral response is limited by a longpass

filter with a cut-on wavelength of 600 nm. Figure 2 shows the
the complete spectral response, defined as the product of the
quantum efficiency and filter transmission curves.
It is convenient to define a TESS magnitude T normalized

such that Vega has T = 0. We calculate the T = 0 photon flux
by multiplying the template A0V spectrum provided by Pickles
(1998) by the TESS spectral response curve and then
integrating over wavelength. We assume Vega has a flux
density of F 3.44 10 9= ´l

- erg s−1 cm−2 Å−1 at λ = 5556 Å
(Hayes 1985). We find that T = 0 corresponds to a flux of

Figure 1. Polar projection illustrating how each ecliptic hemisphere is divided
into 13 pointings. At each pointing, TESS observes for a duration of 27.4 days,
or two spacecraft orbits. The four TESS cameras have a combined field of view
of 24° × 96°. The number of pointings that encompass a given star is primarily
a function of the star’s ecliptic latitude. The dashed lines show 0°, 30°, and 60°
of ecliptic latitude. Coverage near the ecliptic (0°) is sacrificed in favor of
coverage near the ecliptic poles, which receive nearly continuous coverage for
355 days.
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4.03 10 6´ - erg s−1 cm−2, and a photon flux of 1.514 106´
ph s−1 cm−2.

By repeating the calculation for different template spectra
from the Pickles (1998) library, we obtain the photon fluxes for
stars of other spectral types. These are shown in Table 1. To
facilitate comparisons with the standard Johnson-Cousins IC
band (which is nearly centered within the T-band), Table 1 also
provides synthetic I TC - colors. We note that the I TC -
color for an A0V star is 0.035+ , which is equal to the apparent
IC magnitude defined for Vega.

2.3. Simplified Model for the Sensitivity of TESS

The most important stellar characteristics that affect planet
detectability are apparent magnitude and stellar radius. Here we
provide a simple calculation for the limiting apparent
magnitude (as a function of stellar radius) that permits TESS
to detect planets smaller than Neptune (R R4p < Å). This
gives an overview of TESSʼs planet detection capabilities and
establishes the necessary depth of our more detailed simula-
tions of the population of nearby stars.

We assume the noise in the photometric observations to be
the quadrature sum of read noise and the photon-counting noise
from the target star and the zodiacal background (see
Section 6.4 for the more comprehensive noise model). We
require a signal-to-noise ratio (S/N) of 7.3 for detection (see
Section 6.6 for the rationale). We assume that the total
integration time during transits is 6 hr, which may represent
two or more transits of shorter duration. Using these
assumptions, Figure 3 shows the limiting apparent magnitude
as a function of stellar radius at which transiting planets of
various sizes can be detected.

To gauge the necessary depth of the detailed simulations, we
consider the detection of small planets around two types of
stars represented in Figure 3, a Sun-like star and an M dwarf
with T 3200eff = K. These two choices span the range of
spectral types that TESS will prioritize; stars just larger than the
Sun give transit depths that are too shallow, and dwarf stars just
cooler than 3200 K are too faint in the TESS bandpass.

For the Sun-like star, a 4 RÅ planet produces a transit depth
of 0.13%. The limiting magnitude for transits to be detectable is
T = 13.9. This also corresponds to K 13.2s = and a maximum
distance of 1.4 kpc, assuming no extinction.
For the M dwarf with T 3200eff = K, we assume

R R0.155=  , based on the Dartmouth Stellar Evolution
Database (Dotter et al. 2008) for solar metallicity and an age of
1 Gyr. Since Dressing & Charbonneau (2015) found that M
dwarfs very rarely have close-in planets larger than 3 RÅ, we
consider a planet of this size rather than 4 RÅ. At 3 RÅ, the
transit depth is 3.1% and the limiting apparent magnitude for
detection is T = 17.3. This corresponds to K 14.9s = and a
maximum distance of 190 pc, assuming no extinction.
A similar calculation can be carried out for EB stars. Some

TESS target stars will turn out to be EBs, and others will be
blended with faint binaries in the background. The maximum
eclipse depth for an EB is approximately 50%, which occurs

Figure 2. TESS spectral response, which is the product of the CCD quantum
efficiency and the longpass filter curve. Shown for comparison are the filter
curves for the familiar Johnson-Cousins V, R, and IC filters, as well as the SDSS
z filter. Each curve is normalized to have a maximum value of unity. The
vertical dotted lines indicate the wavelengths at which the point-spread
function is evaluated for our optical model (see Section 6.2).

Table 1
Fluxes in the TESS Bandpass and I TC - Colors

Spectral Typea Teff IC = 0 Photon Fluxb I TC -
(K) (106 ph s−1 cm−2) (mmag)

M9V 2450 2.38 306
M5V 3000 1.43 −191
M4V 3200 1.40 −202
M3V 3400 1.38 −201
M1V 3700 1.39 −174
K5V 4100 1.41 −132
K3V 4500 1.43 −101
K1V 5000 1.45 −80.0
G2V 5777 1.45 −69.5
F5V 6500 1.48 −40.0
F0V 7200 1.48 −34.1
A0V 9700 1.56 35.0

Notes.
a The mapping between Teff and spectral type is based on data compiled by
E. Mamajekk.
b The photon flux at T = 0 is 1.514 106´ ph s−1 cm−2.

Figure 3. Limiting magnitude for planet detection as a function of stellar radius
for three planetary radii. Here, detection is defined as achieving an S/N greater
than 7.3 from 6 hr of integration time during transits. The noise model includes
read noise and photon-counting noise from the target star and a typical level of
zodiacal light. While the TESS bandpass is similar to the IC band, the sensitivity
curve is flatter in Ks magnitudes.
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when two identical stars undergo a total eclipse. Assuming the
period is 1 day, and that TESS observes the system for
27.4 days, the limiting apparent magnitude for detection of the
eclipse signals is T 21< , corresponding to many kiloparsecs.

To summarize, TESS is sensitive to small planets around
Sun-like stars within 1 kpc. For M dwarfs, the search distance
is 200 pc. EBs can be detected across the Milky Way. These
considerations set the required depth of our simulations of the
stellar population, which must also take into account the
structure of the galaxy and extinction.

3. STAR CATALOG

Due to the wide range of apparent magnitudes that we need
to consider, and the sensitivity of transit detections to stellar
radii, we use a synthetic stellar population rather than a real
catalog. The basis for our stellar population is TRILEGAL, an
abbreviation for the TRIdimensional modeL of thE GALaxy
(Girardi et al. 2005). TRILEGAL is a Monte Carlo population
synthesis code that models the Milky Way with four
components: a thin disk, a thick disk, a halo, and a bulge.
Each of these components contains stars with the same initial
mass function but with a different spatial distribution, star
formation rate, and age–metallicity relation. For stars with
masses 0.2–7 M, TRILEGAL uses the Padova evolutionary
tracks (Girardi et al. 2000) to determine the stellar radius,
surface gravity, and luminosity as a function of age. For stars
less massive than 0.2 M, TRILEGAL uses a brown dwarf
model (Chabrier et al. 2000). Apparent magnitudes in various
photometric bands are computed using a spectral library
drawing upon several theoretical and empirical sources. A
disk extinction model is used to redden the apparent
magnitudes depending on the location of the star. TRILEGAL
does not include the Magellanic Clouds, nor does it model any
star clusters.

The star counts predicted by the TRILEGAL model were
originally calibrated against the Deep Multicolor Survey
(DMS) and ESO Imaging Survey (EIS) of the South Galactic
Pole. The model was also found to be consistent with the EIS
coverage of the Chandra Deep Field South (Groenewegen
et al. 2002). More recently, TRILEGAL was updated and re-
calibrated against the shallower 2MASS and Hipparcos
catalogs while maintaining agreement with the DMS and EIS
catalogs (Girardi et al. 2005).

Given a specified line of sight and solid angle, TRILEGAL
returns a magnitude-limited catalog of simulated stars, includ-
ing properties such as mass, age, metallicity, surface gravity,
distance, and extinction. Apparent magnitudes are reported in
the Sloan griz, 2MASS JHKs, and Kepler bandpasses; at our
request, L. Girardi kindly added the TESS bandpass to
TRILEGAL. When necessary, we translate between the Sloan
and Johnson-Cousins filters using the transformations for
Population I stars provided by Jordi et al. (2006).

We find it necessary to adjust the properties of the
population of low-mass stars (M M0.78< ) to bring them
into satisfactory agreement with more recent determinations of
the absolute radii and LF of these stars. These modifications are
described in Sections 3.2 and 3.4. In addition, we employ our
own model for stellar multiplicity that is described in
Section 3.3.

3.1. Model Queries

The TRILEGAL simulation is accessed through a web-based
interface.9 We use the default input parameters for the
simulation (Table 2); the post facto adjustments that we make
to dwarf properties, binarity, and the disk LF are discussed
below. The runtime of a TRILEGAL query is limited to
10 minutes, so we build an all-sky catalog by performing
repeated queries over regions with small solid angles.
We divide the sky into 3072 equal-area tiles using the

HEALPix scheme (Górski et al. 2005). Each tile subtends a
solid angle of 13.4 deg2. For the 164 tiles closest to the galactic
disk and bulge, the stellar surface density is too large for the
necessary TRILEGAL computations to complete within the
runtime limit. The high background level and high incidence of
EBs will also make these areas difficult to search for transiting
planets, so we simply omit these tiles from consideration. This
leaves 2908 tiles covering 95% of the sky.
For each of the 2908 sightlines through the centers of tiles,

we make three queries to TRILEGAL:

Table 2
TRILEGAL Input Settings

Parameter Value

Galactic radius of Sun 8.70 kpc
Galactic height of Sun 24.2 pc

IMF (log-normal, Chabrier 2001)
Characteristic mass 0.1 M

Dispersion 0.627 M

Thin Disk
Scale height (sech2) 94.69 pc
Scale radius (exponential) 2.913 kpc
Surface density at Sun 55.4 M pc−2

Thick Disk
Scale height (sech2) 800 pc
Scale radius (exponential) 2.394 kpc
Density at Sun M10 3-

 pc−3

Halo (R1 4 Oblate Spheriod)
Major axis 2.699 kpc
Oblateness 0.583
Density at Sun M10 4-

 pc−3

Bulge (Triaxial, Vanhollebeke et al. 2009)
Scale length 2.5 kpc
truncation length 95 pc
Bar: y x aspect ratio 0.68

Bar-Sun angle 15°
z x ratio 0.31
Central Density 406 M pc−3

Disk Extinction
Scale height (exponential) 110 pc
Scale radius (exponential) 100 kpc
Extinction at Sun (dA dRV ) 0.15 mag kpc−1

A z( )V = ¥ 0.0378 mag

Randomization (rms) 10%

9 http://stev.oapd.inaf.it/cgi-bin/trilegal
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1. The “bright catalog” with K 15s < and a solid angle of
6 ◦. 7. This is intended to include any star that could be
searched for transiting planets; the magnitude limit of
K 15s < is based on the considerations in Section 2.3.
Using the Ks band to set the limiting magnitude is a
convenient way to allow the catalog to have a fainter
Tmagnitude limit for M stars than for FGK stars. The full
solid angle of 13.4 deg2 cannot be simulated due to the
10-minute maximum runtime of the simulation. Instead,
we simulate a 6.7 deg2 field and simply duplicate each
star in the catalog. Once duplicated, we assign coordi-
nates to each star randomly from a probability distribu-
tion that is spatially uniform across the entire tile. Across
all of the tiles, this catalog contains 2.11 107´ stars.

2. The “intermediate catalog” with T 21< and a solid angle
of 0.134 deg2. This is intended to include stars for which
TESS would be able to detect a deep eclipse of a binary
star. We use this catalog to assign blended background
binaries to the target stars in the bright catalog and also to
evaluate background fluxes. This deeper query is limited
to a smaller solid angle (1/100th of the area of the tile) to
limit computational time. The simulation then re-samples
from these stars 100 times when assigning background
stars to the target stars. We also restrict this catalog to
K 15s > in the simulation to avoid double-counting stars
from the bright catalog. Across all tiles, this catalog
contains 1.19 109´ stars.

3. The “faint catalog” with T21 27< < and a solid angle
of 0.0134 deg2. This is used only to calculate background
fluxes due to unresolved background stars. The limiting
magnitude is not critical because the surface brightness
due to unresolved stars is dominated by stars at the
brighter end rather than at the fainter end of the
population of unresolved stars. Stars from this catalog
are re-sampled 1000 times. Across all tiles, this catalog
contains 7.39 109´ stars.

3.2. Properties of Low-mass Stars

Low-mass dwarf stars are of particular importance for
TESS because they are abundant in the solar neighborhood
and their small sizes facilitate the detection of small
transiting planets. Although the TRILEGAL model is designed
to provide simulated stellar populations with realistic distribu-
tions in spatial coordinates, mass, age, and metallicity, we
noticed that the radii of low-mass stars for a given luminosity
or Teff in the TRILEGAL output were smaller than have been
measured in recent observations or calculated in recent
theoretical models.

Figure 4 illustrates the discrepancy. It compares the radius–
magnitude relation employed by TRILEGAL with that of the
more recent Dartmouth models (Dotter et al. 2008) as well as
empirical data based on optical interferometry of field stars and
analysis of EB stars. The interferometric radius measurements
are from Boyajian et al. (2012). The measurements based on
EBs are from the compilation of Andersen (1991) that has
since been maintained by J. Southworth.10 We also include the
systems tabulated by Winn et al. (2011a) in their study of
Kepler-16. The published data specify Teff rather than absolute
IC magnitude; in preparing Figure 4, we converted Teff into

absolute IC using the temperature–magnitude data compiled by
E. Mamajek11 and Pecaut & Mamajek (2013).
Figure 4 shows that the Dartmouth stellar-evolutionary

models give better agreement with measured radii, especially
those from interferometry. Therefore, to bring the key proper-
ties of the simulated stars into better agreement with the data,
we replaced the TRILEGAL output for the apparent magni-
tudes and radii of low-mass stars (0.15–0.78 M) with the
properties calculated with the Dartmouth models. To make
these replacements, we use a trilateral interpolation in mass,
age, and metallicity to determine the absolute magnitudes, Teff ,
and radii from the grid of Dartmouth models. For simplicity,
we assume the helium abundance is solar for all stars.
Furthermore, motivated by Fuhrmann (1998), we only select
the grid points that adhere to the following one-to-one relation
between [α/Fe] and [Fe/H]:

[Fe H] 0 [ Fe] 0.0 (1)a =⩾ ⟺

[Fe H] 0.5 [ Fe] 0.2 (2)a= - =+⟺

[Fe H] 1.0 [ Fe] 0.4. (3)a- =+⩽ ⟺

In calculating the apparent magnitudes of the stars with
properties overwritten from the Dartmouth models, we preserve
the distance modulus from TRILEGAL and apply reddening
corrections using the same extinction model that TRILEGAL
uses. TRILEGAL reports the extinction AV for each star, and
for bands other than V, we use the A AVl ratios from Cardelli
et al. (1989).

Figure 4. Radius–magnitude relation for simulated stars compared to empirical
observations. The Padova models (red curve) are employed by default within
the TRILEGAL simulation. These models seem to underestimate the radii of
low-mass stars; the Dartmouth models (green curve) give better agreement. For
stars of mass 0.14–0.78 M (dashed boundaries) we overwrite the
TRILEGAL-supplied properties with Dartmouth-based properties for a star
of the given mass, age, and metallicity. The interferometric measurements
plotted here are from Boyajian et al. (2012), and the eclipsing-binary
measurements come from a variety of sources (see text). The scatter in radius
for I 5C  arises from stellar evolution.

10 http://www.astro.keele.ac.uk/jkt/debcat/

11 http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_
colors_Teff.txt
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3.3. Stellar Multiplicity

Binary companions to the TESS target stars have three
important impacts on the detection of transiting planets. First,
whenever a “target star” is really a binary, there are potentially
two stars that can be searched for transiting planets. The
effective size of the search sample is thereby increased.
However, there is a second effect that decreases the effective
size of the search sample: if there is a transit around one star,
the constant light from the unresolved companion diminishes
the observed transit depth, making it more difficult to detect the
transit. Even if the transit is still detectable, the radius of the
planet may be underestimated due to the diminished (or
“diluted”) depth. The third effect is that a planet around one
member of a close binary has a limited range of periods within
which its orbit would be dynamically stable.

Furthermore, EBs that are blended with target stars, or that
are bound to the target star in hierarchical triple or quadruple
systems, can produce eclipses that resemble planetary transits.
Because EBs produce larger signals than planetary transits, the
population of EBs needs to be simulated down to fainter
apparent magnitudes than the target stars.

To capture these effects in our simulations, we need a
realistic description of stellar multiplicity. We are guided by the
review of Duchêne & Kraus (2013). The multiplicity fraction
(MF) is defined as the fraction of systems that have more than
one star; it is the sum of the binary fraction (BF), triple fraction
(TF), quadruple fraction (QF), and so on. Our simulations
consider systems with up to 4 stars.

The MF has been observed to increase with the mass of the
primary, which is reflected in our simulation. In our
TRILEGAL queries, every star is originally a binary, and we
decide randomly whether to keep the secondary based on the
primary mass and the MF values in Table 3. Next, we turn a
fraction of the remaining binaries into triple and quadruple
systems according to the desired TF and QF. The MF, TF, and
QF are adopted as follows.

1. For primary stars of mass 0.1–0.6 M, we adopt the MF
of 26% from Delfosse et al. (2004, p. 166). For systems
with n = 3 or 4 components, the fraction of higher-order
systems is taken to be 3.9 n2- from Duchêne &
Kraus (2013).

2. For stars of mass 0.8–1.4 M, we draw on the results of
Raghavan et al. (2010). Primary masses of 0.8–1.0 M
have a MF of 41%, while primary masses of 1.0–1.4 M
have a MF of 50%. The fraction of higher-order systems
is 3.8 n2- for both ranges (Duchêne & Kraus 2013).

3. For stars of mass 0.6–0.8 M, we adopt an intermediate
MF of 34%. The fraction of higher-order systems is
3.7 n2- .

4. For primaries more massive than 1.4 M, we use the
results for A stars from Kouwenhoven et al. (2007),
giving a MF of 75%. We assume that the fraction of
higher-order systems is 3.7 n2- .

Next, we consider the properties of the binary systems.
TRILEGAL originally creates binaries with a uniform
distribution in the mass ratio between the secondary and the
primary, q, between 0.1 and 1. However, a more realistic
distribution in q is

dN

dq
q , (4)µ g

where the power-law index γ is allowed to vary with the
primary mass, as specified in Table 3. When we select the
binary systems to obtain the desired MF, we choose the
systems to re-create this distribution in q over the range

q0.1 1.0< < .
The period P is not specified by TRILEGAL, so we assign it

from a log-normal distribution. Duchêne & Kraus (2013)
parameterizes the distribution in terms of the mean semimajor
axis (ā) and the standard deviation in Plog ; both parameters
vary with the primary mass as shown in Table 3. We convert
from ā to P̄ with Keplerʼs third law.
The orbital inclination i is drawn randomly from a uniform

distribution in icos . The orbital eccentricity e is drawn
randomly from a uniform distribution, between zero and a
maximum value

e P
1

tan (2[log 1.5])
1

2
, (5)max

1

p
= - +-

where P is specified in days, to provide a good fit to the range
of eccentricities shown in Figure 14 of Raghavan et al. (2010).
The argument of pericenter ω is drawn randomly from a
uniform distribution between 0° and 360°.
For the systems that are designated as triples, we assign the

properties using the approach originally suggested by Eggleton
(2009). Although there is no physical reason why this method
should work well, it has been found to reproduce the
multiplicity properties of a sample of Hipparcos stars
(Eggleton & Tokovinin 2008). First, we create a binary
according to the prescriptions described above with a period
P0. Then, we split the primary or secondary star (chosen
randomly) into a new pair of stars. The new pair of stars orbit
their barycenter with a higher-order period PHOP according to

P

P
0.2 10 , (6)uHOP

0

2= ´ -

where u is uniformly distributed between 0 and 1. This
procedure ensures that PHOP is 1 5< the orbital period of the
original binary system, a rudimentary method for enforcing
dynamical stability. The mass of a star is conserved when it is
split, so the barycenter of the original binary remains the same,
and the orbital period of the companion star about this
barycenter is unchanged.
The original prescription given by Eggleton (2009) assigns

P0 from a distribution peaking at 105 days and allows the new
period to vary over 5 decades. Since our assumed distribution
for Plog( )0 peaks at a shorter period (for stars 1 M), we only
allow the higher-order orbital period to vary over 2 decades in

Table 3
Binary Properties as a Function of the Mass of the Primary

Mass (M) MF ā (AU) P(log )s γ TF QF

<0.1 0.22 4.5 0.5 4.0 n/a n/a
0.1–0.6 0.26 5.3 1.3 0.4 0.067 0.017
0.6–0.8 0.34 20 2.0 0.35 0.089 0.023
0.8–1.0 0.41 45 2.3 0.3 0.11 0.030
1.0–1.4 0.50 45 2.3 0.3 0.14 0.037
>1.4 0.75 350 3.0 −0.5 0.20 0.055
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our implementation. In this way, we avoid generating
unphysically short periods.

The total mass of a new pair of stars is set equal to that of the
original star, and the mass ratio q is assigned in the following
manner. The parent distribution of q is taken from the sample
of triples presented in Figure 16 of Raghavan et al. (2010). We
model this distribution by setting q = 1.0 for 23% of the pairs
and drawing q from a normal distribution with
( , ) (0.5, 0.04)2m s = for the other 77% of the pairs. Finally,
for each star in a higher-order pair, we calculate the absolute
and apparent magnitudes, radius, and Teff from the new stellar
mass in combination with the age and metallicity inherited
from the original star. We do so using the same interpolation
onto the Dartmouth model grid described in Section 3.2.

For the systems that are turned into quadruples, we create a
binary and then split both stars using the procedure described
above. This results in two higher-order pairs that orbit one
another with the original binary period P0.

3.4. Luminosity Function

After modifying the TRILEGAL simulation to improve upon
the properties of low-mass stars and assign multiple-star
systems, we ensure that the LF is in agreement with
observations. For this purpose, we rely on two independent
J-band LFs reported in the literature. The first LF is from Cruz
et al. (2007). It is based on volume-limited samples: a 20 pc
sample for M 11J > and an 8 pc sample for M 11J < (Reid
et al. 2003). Both samples use 2MASS photometry and are
limited to J 16 . The second LF, from Bochanski et al.
(2010), is based on data from the Sloan Digital Sky Survey for
stars with r16 22< < . The resulting LF is reported for the
range M5 10J< < . Where the Cruz et al. (2007) and
Bochanski et al. (2010) LFs overlap, we use the mean of the
two LFs reported for single and primary stars (the brightest
member of a multiple system). This results in the “empirical
LF” to which the TRILEGAL LF is adjusted.

Next, we compute the LF of our TRILEGAL-based catalog
by selecting all of the single and primary disk stars with
distances within 30 pc. Then, we bin the stars according to MJ

and compare the result to the empirical LF. For eachMJ bin, we

find the ratio of the TRILEGAL LF to the empirical LF. This
ratio ranges from 0.5 to 11 across all of the magnitude bins.
We then return to each HEALPix tile individually, and we

bin the stars by MJ. Using the ratio computed above for each
MJ bin, we select stars at random for duplication or deletion to
bring the simulated LF into agreement with the empirical LF.
This process results in a net reduction of ≈30% in the total
number of stars in the catalog and a shift in the LF peak toward
brighter absolute magnitudes.
The left panel of Figure 5 shows the LF of the TRILEGAL

simulation before and after this adjustment. The final LF is also
quantified in Table 4. Each column of the table considers stellar
multiplicity in a different fashion: “Singles and Primaries”
counts single stars and the brightest member of a multiple
system; “Systems” counts the combined flux of all stars in a
system, regardless of whether it is single or multiple; and
“Individual Stars” counts the primary and secondary members
separately.
As a sanity check, we make some further comparisons

between our simulated LF and other published LFs. Figure 5
shows a comparison to the 10 pc RECONS sample (Henry
et al. 2006), the Hipparcos catalog (Perryman et al. 1997 and
van Leeuwen 2007), and the IC-band LF of Zheng et al.
(2004). The agreement with the Hipparcos sample is good up
until V ≈ 8, where the Hipparcos sample becomes incomplete.
The RECONS LF has a lower and blunter peak, and the Zheng
et al. (2004) LF has a sharper and taller peak than the simulated
LF, but are otherwise in reasonable agreement.
As another sanity check, we examine star counts as a

function of limiting apparent magnitude in Figure 6. We
compare the number of stars per unit magnitude per square
degree in the simulated stellar population against star counts
from the classic Bahcall & Soneira (1981) star-count model in
the IC band as well as actual star counts from the 2MASS point
source catalog (Skrutskie et al. 2006) in the J-band. In all
cases, multiple systems are counted as a single “star” with a
magnitude equal to the total system magnitude. The agreement
seems satisfactory; we note that the comparison with 2MASS
becomes less reliable at faint magnitudes because of photo-
metric uncertainties as well as extra-galactic objects in the
2MASS catalog.

Figure 5. Luminosity function of the simulated stellar population compared with various published determinations. Left: Comparison with the J-band LFs of Cruz
et al. (2007) and Bochanski et al. (2010) before and after we correct the LF of the simulation. The stellar multiplicity and dwarf properties have already been adjusted
in the “Uncorrected” LF. Center: Comparison with the IC-band LF of Zheng et al. (2004) and the Hipparcos sample (Perryman et al. 1997 and van Leeuwen 2007).
Right: Comparison with Hipparcos and the 10 pc RECONS sample (Henry et al. 2006). For the J- and V-band LFs, we count the single, primary, and secondary stars
separately, since binaries are generally resolved in the surveys with which we are comparing. For the IC band, we count the system magnitude of binary systems since
we assume they are unresolved in the Zheng et al. (2004) survey. The range of absolute magnitudes from the Hipparcos catalog are dominated by single and primary
stars, so this distinction is less important.
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3.5. Stellar Variability

Intrinsic stellar variability is a potentially significant source
of photometric noise for the brightest stars that TESS observes.
To each star in the simulation, we assign a level of intrinsic
photometric variability from a distribution corresponding to the
spectral type. Our assignments are based on the variability of
Kepler stars reported by Basri et al. (2013). For each star, they
calculated the median differential variability (MDV) on a 3 hr
timescale by binning the light curve into 3 hr segments and
then calculating the median of the absolute differences between
adjacent bins. Since each transit is a flux decrement between
one segment of a light curve relative to a much longer
timeseries, rather than two adjacent segments of equal length,
the noise statistic relevant to transit detection is approximately

2 smaller than the MDV.
G. Basri et al. (2013) kindly provided the data from their

Figures 7–10. Their sample is divided into four subsamples
according to stellar Teff . We select 100 stars in each subsample
with m 11.5Kep < to minimize the contributions of instrumental
noise from Kepler. Since red giants exhibiting pulsations can
contaminate the subsample with T 4500eff < K, particularly at
brighter apparent magnitudes, we select stars with

m12.5 13.1Kep< < for these temperatures.
Figure 7 shows the resulting distributions of variability. Each

star in our simulated population is assigned a variability index
from a randomly chosen member of the 100 stars in the
appropriate Teff subsample. The variability of the T 4500eff < K
subsample is roughly 5 times greater than that of solar-type
stars. However, M dwarfs are the faintest stars that TESS will
observe, so instrumental noise and background will dominate
the photometric error of these targets.

Since the photometric variations associated with stellar
variability exhibit strong correlations on short timescales, we

assume that the level of noise due to intrinsic variability is
independent of transit duration: we do not adjust it according to
t 1 2- as would be the case for white noise. However, we do
assume that stellar variations are independent from one transit
to the next, so the noise contribution from stellar variability
scales with the number of transits as N 1 2- . In summary, the
standard deviation in the relative flux due to stellar variability,
after phase-folding all of the transits together, is taken to be

N
MDV(3 hr)

2
. (7)V

1 2s = -

4. ECLIPSING SYSTEMS

We next assign planets to the simulated stars, and we
identify the transiting planets as well as the EBs. We then
calculate the properties of the transits and eclipses relevant to
their detection and follow-up.

4.1. Planets

The planet assignments are based on several recent studies of
Kepler data. The Kepler sample has high completeness for the
planetary periods (P 20 days) and radii (R Rp  Å) that are
most relevant to TESS.
For FGK stars, we adopt the planet occurrence rates from

Fressin et al. (2013). For T 4000eff < K, we adopt the
occurrence rates from Dressing & Charbonneau (2015), who
updated the results that were originally presented by Dressing
& Charbonneau (2013). We note that Dressing & Charbonneau
(2015) corrected their planet occurrence rates for astrophysical
false positives by using the false-positive rates presented by
Fressin et al. (2013) as a function of the apparent planet size.
In both cases, the published results are provided as a matrix

of occurrence rates and uncertainties for bins of planetary
radius and period. The incompleteness of the Kepler sample is
considered for each bin. Because the bins are relatively coarse,
we allow the radius and period of a given planet to vary
randomly within the limits of each bin. Periods are assigned
from a uniform distribution in Plog . (We omit planets for
which the selected period would place the orbital distance
within R2 , on the grounds that tidal forces would destroy any
such planets.)
For the smallest radius bin examined by Fressin et al.

(2013), we choose the planet radius from a uniform distribution
between 0.8–1.25 RÅ. For the larger-radius bins, we choose the
planet radius within each bin according to the distribution

dN

dR
R . (8)

p
p

1.7µ -

These intra-bin distributions were chosen ad hoc to provide a
relatively smooth function in the radius–period plane. Like-
wise, when applying the occurrence rates from Dressing &
Charbonneau (2015), for the smallest radius bin we choose the
planet radius from a uniform distribution between 0.5–1.0 RÅ.
For the bin extending from 1.0–1.5 RÅ, we chose the planet
radius from a distribution with a power-law index of −1. For
R R1.5p > Å we use a power-law index of −1.7. The maximum
planet size in the Fressin et al. (2013) matrix is 22 RÅ, and the
maximum planet size in the Dressing & Charbonneau (2015)
matrix is 4 RÅ. The final distributions are illustrated in Figure 8.

Table 4
J-band Luminosity Function in 10−3 Stars pc−3

MJ Primaries and Singles Systems Individual Stars

3.25 0.85 0.94 1.08
3.75 1.44 1.74 1.72
4.25 2.74 2.87 3.10
4.75 3.85 3.38 4.55
5.25 1.55 1.54 2.19
5.75 1.79 1.91 2.27
6.25 3.01 3.12 3.57
6.75 3.37 4.04 4.15
7.25 7.74 7.90 8.82
7.75 7.15 7.10 8.57
8.25 7.62 7.03 9.29
8.75 4.84 4.89 6.64
9.25 5.25 4.75 6.50
9.75 3.56 3.49 4.72
10.25 1.95 2.11 2.68
10.75 2.16 2.10 2.67
11.25 1.75 1.56 2.21
11.75 1.11 1.07 1.52
12.25 0.73 0.76 1.08
12.75 0.55 0.52 0.84
13.25 0.45 0.36 0.69
13.75 0.02 0.02 0.06
14.25 0.00 0.00 0.02
14.75 0.00 0.00 0.00
15.25 0.00 0.00 0.02
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We allow our simulation to assign more than one planet to a
given star with independent probability. The only exceptions
are (1) we require the periods of adjacent planetary orbits to
have ratios of at least 1.2, and (2) planets around a star with a
binary companion cannot have orbital periods that are within a
factor of 5 of the binary orbital period. The result is that 53% of
the transiting systems around FGK stars and 55% of those
around M stars are multiple-planet systems. Figure 9 shows the
resulting distribution of period ratios. The orbits of multi-planet
systems are assumed to be perfectly coplanar, both for
simplicity and from the evidence for low mutual inclinations
in compact multi-planet systems (Figueira et al. 2012;
Fabrycky et al. 2014).
As a sanity check, we compare the proportion of planets in

multi-transiting systems in our simulated stellar population to
the proportion of multi-transiting Kepler candidates. In our
simulation, 26.2% of planets around FGK stars and 33.6% of
planets around M stars reside in multi-transiting systems. Out
of the 4178 Kepler objects of interest, 41% are in multi-
transiting systems.
For simplicity, we assume that all planetary orbits are

circular. The orbital inclinations i are assigned randomly from a
uniform distribution in icos . We identify the transiting systems
as those with b 1<∣ ∣ , where

b
a i

R

cos
(9)=



is the transit impact parameter.
We then calculate the properties of the planets and their

transits and occultations. The transit duration Θ is given by
Equations (18) and (19) of Winn (2011) in terms of the mean
stellar density r:

P
b13 hr

365 days
1 . (10)

1 3 1 3

2
r

r
Q =

æ

è
ççç

ö

ø
÷÷÷÷

æ

è

çççç

ö

ø

÷÷÷÷÷
-

-





Figure 6. Star counts as a function of apparent magnitude and galactic coordinates. In the IC band (top row), we compare the star counts in our simulated catalog
(black) to those from Bahcall & Soneira (1981) (blue). In the J-band (bottom row), we compare our catalog (black) to the 2MASS point source catalog (red).

Figure 7. Input distributions of the intrinsic stellar variability Vs per transit in
parts per million (ppm). Each star in our catalog is assigned a variability
statistic from these distributions according to its effective temperature. We
calculate Vs from the 3 hr MDV statistic in Basri et al. (2013) using
Equation (7).
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The depth of the transit 1d is given by R R( )p
2

 . The depth of
the occultation (secondary eclipse) is found by estimating the
effective temperature of the planet (Tp) and then computing the
photon flux pG within the TESS bandpass from a blackbody of
radius Rp. The photon flux from the planet is then divided by
the combined photon flux from the planet and the star:

. (11)2
p

p
d =

G

G + G

The equilibrium planetary temperature Tp is determined by
assuming radiative equilibrium with an albedo of zero and

isotropic radiation (from a recirculating atmosphere), giving

T T
R

a2
. (12)p eff= 

We also keep track of the relative insolation of the planet S SÅ,
defined as

S

S

a R

R

T

1 AU 5777 K
. (13)

2 2
eff

4

=
æ
è
ççç

ö
ø
÷÷÷

æ

è
çççç

ö

ø
÷÷÷÷
æ
è
ççç

ö
ø
÷÷÷Å
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4.2. Eclipsing Binaries

We identify the EBs by computing the impact parameters b1
and b2 of the primary and secondary eclipses, respectively:

b
a i

R

e

e

cos 1

1 sin
(14)1,2

1,2

2

w
=

æ

è
çççç

-


ö

ø
÷÷÷÷

(see Equations (7)–(8) of Winn 2011). Non-grazing primary
eclipses are identified with the criterion

b R R R , (15)1 1 1 2< -

while grazing primary eclipses have larger impact parameters:

R R b R R R . (16)1 2 1 1 1 2- < < +

The eclipse depth of non-grazing primary eclipses is given by

R

R
(17)1

2

1

2
1

1 2
d =

æ

è
çççç

ö

ø
÷÷÷÷

G
G + G

where 1G and 2G are the photon fluxes from each star. In the
event that R R2 1> , the area ratio is set equal to unity; in that
case, the primary undergoes a total eclipse. We neglect limb-
darkening in these calculations for simplicity. Secondary
eclipses are identified and quantified in a similar manner.

Figure 8. Input distributions of planet occurrence in the period–radius plane. Left: For stars with T 4000eff > K, we use the planet occurrence rates reported by Fressin
et al. (2013). Right: For stars with T 4000eff < K, we use the planet occurrence rates reported by Dressing & Charbonneau (2015).

Figure 9. Distribution in the relative period difference for multi-planet systems.
In systems with more than two planets, the minimum period difference is
counted. All systems with at least one transiting member and an apparent
magnitude of I 12C < are counted.
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For grazing eclipses, the area ratio R R( )2 1
2 is replaced with

the overlap area of two uniform disks with the appropriate
separation of their centers, given by Equations (2.14–5) of
Kopal (1979). The durations and timing of eclipses are
calculated from Equations (14)–(16) of Winn (2011,
pp. 55–77).

We discard EBs when the assigned parameters imply a R1<
or a R2< . We also exclude systems where a is less than the
Roche limit aR for either star, assuming they are tidally locked:

a R
M

M
3 . (18)R1,2 2,1

1,2

2,1

1 3

=
æ

è
çççç

ö

ø
÷÷÷÷÷

For primaries with I 12C < , our simulated stellar population
has 97461 EBs over the 95% of the sky that is covered by the
simulation. Another 21441 systems contain eclipsing pairs in a
hierarchical system. As another sanity check, we compare the
simulated density of eclipsing systems on the sky to the catalog
of EBs in the Kepler field. We use Version 2 of the
compilation12 from Prša et al. (2011) and Slawson et al.
(2011) to plot the density of EBs as a function of apparent
system magnitude in Figure 10. Within the range of

P0.5 50< < days, this catalog contains 1.85 EBs deg−2 with
m 12Kep < . A 203 deg2 subsample of our TRILEGAL catalog,
taken from 15 HEALPix tiles and centered on galactic
coordinates l = 76° and b = 13 ◦. 4 for similarity to the Kepler
field, contains 1.04 EBs deg−2 with Kp 12< . This disparity
suggests that our model of the eclipsing-binary population
could have systematic errors of nearly 80%, at least for the
relatively low galactic latitude of the Kepler field, where the
TRILEGAL simulation loses accuracy, and the steep increase
in the stellar surface density makes it difficult to accurately
match the simulation results to the Kepler field.

5. BEST STARS FOR TRANSIT DETECTION

Now that planets have been assigned to all of the stars with
K 15s < , it is interesting to explore the population of nearby
transiting planets independently from how they might be

detected by TESS or other surveys. This helps to set
expectations for the brightest systems that can reasonably be
expected to exist with any desired set of characteristics.
First, we identify the brightest stars with transiting planets.

Figure 11 shows the cumulative number of transiting planets as
a function of the limiting apparent magnitude of the host star.
This is equal to the total number of planets that would be
detected in a 95% complete magnitude-limited survey (since
our HEALPix tiles cover this fraction of the sky). We include
the stars with effective temperatures between 2000 and 7000 K
and R R1.5<  that host planets with periods <20 days. To
reduce the statistical error, we combine the outcomes of five
trials.
The brightest star with a transiting planet of size 0.8–2 RÅ

has an apparent magnitude I 4.2C = . The tenth brightest such
star has I 6.3C = . For transiting planets of size 2–4 RÅ, the
brightest host star has I 5.7C = and tenth brightest has
I 7.3C = . One must look deeper in order to find potentially
habitable planets with periods shorter than 20 days; if we
require R R0.8 2p< <Å and S S0.2 2< <Å , the brightest
host star has I 9.5C = and the tenth brightest has I 11.6C = .
(While there is also an outer limit to the HZ, we do not impose
a lower limit on S since transit surveys are biased toward close-
in planets.)
In reality, the brightest host stars could be brighter or fainter

than the expected magnitudes. In Figure 11 we also show the
brightest known transiting systems for some of the categories.
Their agreement with the simulated cumulative distributions
suggests that some of the very brightest transiting systems have
already been discovered.

6. INSTRUMENT MODEL

Now that the simulated population of transiting planets and
EBs has been generated, the next step is to calculate the S/N of

Figure 10. Surface density of eclipsing binaries as a function of limiting
magnitude in the Kepler bandpass. The blue curve represent actual
observations by Slawson et al. (2011). The red curve is from our simulated
stellar population in the vicinity of the Kepler field. All eclipsing systems with

P0.5 50< < days are shown.

Figure 11. Expected number of transiting planets that exist, regardless of
detectability, over the 95% of the sky covered by the simulation. The
cumulative number of transiting planets is plotted as a function of the limiting
apparent IC magnitude of the host star. The mean of five realizations is shown.
We count all planets having orbital periods between 0.5–20 days and host stars
with effective temperatures 2000–7000 K and radii 0.08–1.5 R. The planet
populations are categorized by radius ranges as shown in the figure. Also
marked are the apparent magnitudes of a few well-known systems with very
bright host stars; their locations relative to the simulated cumulative
distributions suggest that these systems are among the very brightest that exist
on the sky.

12 http://keplerebs.villanova.edu/v2
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the transits and eclipses when they are observed by TESS. The
signal is the fractional loss of light during a transit or an eclipse
(δ), and the noise (σ) is calculated over the duration of each
event. The noise is the quadrature sum of all the foreseeable
instrumental and astrophysical components.

Evaluation of the S/N is partly based on the parameters of
the cameras already described in Section 2. We also need to
describe how well the TESS cameras can concentrate the light
from a star into a small number of pixels. The same description
will be used to evaluate the contribution of light from
neighboring stars that is also collected in the photometric
aperture.

Our approach is to create small synthetic images of each
transiting or eclipsing star, as described below. These images
are then used to determine the optimal photometric aperture
and the S/N of the photometric variations.

The synthetic images are also used to study the problem of
BEBs. Transit-like events that are apparent in the total signal
measured from the photometric aperture could be due to the
eclipse of any star within the aperture. With only the
photometric signal, there is no way to determine which star
is eclipsing. If the timeseries of the x and y coordinates of the
flux-weighted center of light (the “centroid”) is also examined,
then in some cases, one can determine which star is undergoing
eclipses. As shown in Section 8.4, BEBs tend to produce larger
centroid shifts during eclipses than transiting planets. The
synthetic images allow us to calculate the centroid during and
outside of transits and eclipses.

6.1. Pixel Response Function (PRF)

The synthetic images are constructed from the PRF, which
describes the fraction of light from a star that is collected by a
given pixel. It is calculated by numerically integrating the
point-spread function (PSF) over the boundaries of pixels. The
photometric aperture for a star is the collection of pixels over
which the electron counts are summed to create the photometric
signal; they are selected to maximize the photometric S/N of
the target star. Throughout this study, we assume that the pixel
values are simply summed without any weighting factors.

The TESS lens uses seven elements with two aspheres to
deliver a tight PSF over a large focal plane and over a wide
bandpass. Due to off-axis and chromatic aberrations, the TESS
PSF must be described as a function of field angle and
wavelength. We calculate the PSF at four field angles from the
center (0°) to the corner (17°) of the field of view. Chromatic
aberrations arise both from the refractive elements of the TESS
camera and from the deep-depletion CCDs absorbing redder
photons deeper in the silicon. We calculate the PSF for nine
wavelengths, evenly spaced by 50 nm, between 625 and
1025 nm. These wavelengths are shown with dashed lines in
Figure 2. These wavelengths also correspond to a set of
bandpass filters that will be used in the laboratory to measure
the performance of each flight TESS camera.

The TESS lens has been modeled with the Zemax ray-tracing
software. We use the Zemax model to trace 250,000 simulated
rays through the camera optics for each field angle and
wavelength. The model is set to the predicted operating
temperature of −75°C. Rays are propagated through the optics
and then into the silicon of the CCD. A probabilistic model is
used to determine the depth of travel in the silicon before the
photons are converted to electrons. Finally, the diffusion of the

electrons within the remaining depth of silicon is modeled to
arrive at the PSF.
Pointing errors from the spacecraft will effectively enlarge

the PSF because the 2 s exposures are summed into 2-minute
stacks without compensating for these errors. The spacecraft
manufacturer (Orbital Sciences) has provided a simulated time
series of spacecraft pointing errors from a model of the
spacecraft attitude control system. Using two minutes of this
time series, we offset the PSF according to the pointing error
and then stack the resulting time series of PSFs. The rms
amplitude of the pointing error is ≈1″, which is small in
comparison to the pixel size and the full width half-maximum
of the PSF. Thus, the impact of pointing errors on short
timescales turns out to be minor. Long-term drifts in the
pointing of the cameras will also introduce photometric errors,
but this effect is budgeted in the systematic error described in
Section 6.4.2.
Limits in the manufacturing precision of TESS cameras will

also increase the size of the PSF from its ideal value. In a
Monte Carlo simulation drawing from the tolerances prescribed
in the optical design, the the fraction of the flux captured by the
brightest pixel in the PRF is reduced by 3% in 80% of cases.
To capture this effect, we simply increase the size of the PSF
by ≈3% to achieve the same reduction.
Even after considering jitter and manufacturing errors, the

PSF is still under-sampled by the 15 μm pixels of the TESS
CCDs. Therefore, we must recalculate the PRF for a given
offset and orientation between the PSF and the pixel
boundaries. We numerically integrate the PSF over a grid of
16 × 16 pixels to arrive at the PRF. We do so over a 10 10´
grid of sub-pixel centroid offsets and two different azimuthal
orientations (0° and 45°) with respect to the pixel boundaries.
For the corner PSF (at a field angle of 17°), only the 45°
azimuth angle is considered.
We can also view the PRF in terms of the cumulative

fraction of light collected by a given number of pixels. In
Figure 13, we average over all of the centroid offsets and both
azimuthal angles. For clarity, only three of the field angles and
three values of Teff are shown. There is little change in the PRF
across the range of Teff , but the PRF degrades significantly at
the corners of the field.

6.2. Synthetic Images

For each target star with eclipses or transits, we create a
synthetic image in the following manner. First, we determine
the appropriate PRF based on the starʼs color and location in
the camera field. We calculate the field angle from its ecliptic
coordinates and the direction in which the relevant TESS
camera is pointed. We randomly assign an offset between the
star and the nearest pixel center, and we randomly assign an
azimuthal orientation of either 0° or 45°. We then look up the
nine wavelength-dependent PRFs for the appropriate field
angle, centroid offset, and azimuthal angle. The nine PRFs are
summed with weights according to the stellar effective
temperature.
The weight of a given PRF is proportional to the stellar

photon flux integrated over the wavelengths that the PRF
represents. Outside of the main simulation, we considered a
Vega-normalized stellar template spectrum of each spectral
type from the Pickles (1998) library. We multiplied each
template spectrum by the spectral response function of the
TESS camera, and we integrated the photon flux for each of the
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nine PRF bandpasses. Next, we fitted a polynomial function to
the relationship between the stellar effective temperatures and
the photon flux in each bandpass. During the simulation, the
polynomial functions are used to quickly calculate the
appropriate PRF weights as a function of stellar effective
temperature.

Once the PRFs are summed, the result is a synthetic 16 × 16-
pixel image of each target star. We only consider the central
8 × 8 pixels when determining the optimal photometric
aperture; the left panel of Figure 12 shows an example.

After synthesizing the image of each eclipsing or transiting
target star, a separate 16 × 16 image is synthesized of all the
relevant neighboring stars and companion stars. The neighbor-
ing stars are drawn from all three star catalogs described in
Section 3. The stars are assumed to be uniformly distributed
across each HEALPix tile, allowing us to randomly generate
the distances between the target star and the neighboring stars.
Stars from the target catalog are added to the synthesized image
if they are within a radius of 6 pixels from the target star. Stars
from the intermediate catalog are added if they are within 4
pixels, and stars from the faint catalog are added if they are
within 2 pixels. The synthesized images are created in the same
manner as described above: by weighting, shifting, and
summing the PRFs associated with each star. The right panel
of Figure 12 shows an example.

Synthetic images are also created for the EB systems drawn
from the intermediate catalog, but a slightly different approach
is taken. For each EB, we search for any target stars within 6
pixels. If any are found, the brightest is added to the list of
target stars with apparent transits or eclipses. Separate synthetic
images are created for the target star, the EB, and the non-
eclipsing neighboring stars. Hierarchical binaries are treated in
a similar fashion; the non-eclipsing component is treated as the
target star, and a separate synthetic image is created for the
eclipsing pair so that its apparent depth can be diluted. While
this approach may appear to strongly depend upon the
somewhat arbitrary magnitude limits adopted for the different
catalogs, this is not really the case. Both the EBs from the
target catalog and the BEBs from the intermediate catalog end
up being diluted by neighboring stars drawn from all of the
catalogs.

6.3. Determination of Optimal Aperture

For each target star that is associated with an eclipse or
transit (whether it is due to the target star itself or a blended

eclipsing binary), we select the pixels that provide the optimal
photometric aperture from the central 8 × 8 pixels of its
synthetic image. Starting with the three brightest pixels in the
PRF, we add pixels in order of decreasing brightness one at a

Figure 12. Synthetic images produced from the pixel-response function (PRF).
Left: A target star. The PRFs computed for 9 wavelengths have been stacked to
form a single image. The weight of each PRF in the sum depends on the the
stellar effective temperature. Right: Fainter stars in the vicinity of the target
star. We sum the flux from neighboring stars, with PRFs weighted according to
the Teff of each star, in the same fashion as the target stars.

Figure 13. TESS pixel response function (PRF) after sorting and summing to
show the cumulative fraction of light collected for a given number of pixels in
the photometric aperture. We show this fraction for three field angles and three
values of stellar effective temperature. The dotted line is for T 3000eff = K, the
solid line is for 5000 K, and the dashed line is for 7000 K. These temperatures
span most of the range of the TESS target stars.

Figure 14. Noise model for TESS photometry. Top: Expected standard
deviation of measurements of relative flux, as a function of apparent
magnitude, based on 1 hr of data. For the brightest stars, the precision is
limited by the systematic noise floor of 60 ppm. For the faintest stars, the
precision is limited by noise from the zodiacal light (shown here for an ecliptic
latitude of 30°). Over the range I 8C » –13, the photon-counting noise from the
star is the dominant source of uncertainty. Bottom: The number of pixels in the
optimal photometric aperture, chosen to maximize the S/N. The scatter in the
simulated noise performance and number of pixels is due to the random
assignment of contaminating stars and centroid offsets in the PRF.
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time. At each step, we sum the flux of the pixels from the
synthetic image of the target star and from the synthetic image
of the neighboring stars. We also consider the read noise and
zodiacal noise, which are discussed in Section 6.4. As the
number of pixels in the photometric aperture increases, more
photons are collected from the target star, and more noise is
accumulated from the readout, sky background, and neighbor-
ing stars. The optimal photometric aperture maximizes the S/N
of the target star even if the eclipse is produced by a blended
binary. We assume that the data will be analyzed with prior
knowledge of the locations of neighboring stars (but no prior
knowledge of whether they eclipse).

Once the optimal aperture is determined, we calculate the
dilution parameter D, which is the factor by which the true
eclipse or transit depth is reduced by blending with other stars
in the photometric aperture. Specifically, the dilution parameter
is defined as the ratio of the total flux in the aperture from the
neighboring stars ( NG ) and target star ( TG ) to the flux from the
target star:

D . (19)N T

T
=

G + G
G

For blended binaries and hierarchical systems, the denominator
is replaced with the flux from the binary BG , and the target star
becomes a source of dilution:

D . (20)N T B

B
=

G + G + G
G

With this definition, D = 1 signifies an isolated system, and in
general, D 1> . This parameter is later reported for all detected
eclipses under the “Dil.” column of Table 6.

6.4. Noise Model

The photometric noise model includes the photon-counting
noise from all of the stars in the photometric aperture, photon-
counting noise from zodiacal light (ZL), stellar variability, and
instrumental noise. Stellar variability and background stars are
randomly assigned from distributions, while the other noise
terms are more deterministic in nature. Figure 14 shows the
relative photometric noise as a function of apparent magnitude
and also breaks down the contributions from the deterministic
sources of noise. Each subsection below describes the noise
terms in more detail.

6.4.1. Zodiacal Light

Although TESS avoids the telluric sky background by
observing from space, it its still affected by the ZL and its
associated photon-counting noise. Our model of the zodiacal
flux is based on the spectrum measured by the Space Telescope
Imaging Spectrograph on the Hubble Space Telescope.13 We
multiply this ZL spectrum by the TESS spectral response
function and integrate over wavelength. This gives the photon
flux of

2.56 10 10 ph s cm arcsec , (21)V3 0.4( 22.8) 1 2 2´ - - - - - -

where V is the V-band surface brightness of the ZL in mag
arcsec−2. For TESS, the pixel scale is 21″. 1 and the effective
collecting area is 69 cm2. To model the spatial dependence of

V, we fit the tabulated values of V as a function of helio-ecliptic
coordinates,14 with a function

V V V
b 90

90
(22)max
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where b is the ecliptic latitude and Vmax and ΔV are free
parameters. Because TESS will generally be pointed in the anti-
solar direction (near helio-ecliptic longitude l ≈ 180°), and
because V depends more strongly on latitude than longitude in
that region, we only fitted to the data with l 120⩾ and
weighted the points in proportion to l( 90 )2-  . The least-
squares best-fit has V 23.345max = mag and ΔV = 1.148 mag.
Based on these results, we find that the ZL collected in a 2 s

image ranges from 95–270 e- pix−1 depending on ecliptic
latitude. The photon-counting noise associated with this signal
varies from 10–16 e- pix−1 rms, as mentioned in Section 2.

6.4.2. Instrumental Noise

The read noise of the CCDs is assumed to be 10 e- pix−1 rms
in each 2 s exposure, which is near or below the level of
photon-counting noise from the ZL. Both the read noise and ZL
noise grow in proportion to the square root of the number of
pixels used in the photometric aperture.
Our noise model for TESS cameras also includes a

systematic error term of 60 ppm hr1 2. This is an engineering
requirement on the design rather than an estimate of a particular
known source of error. We assume that the systematic error is
uncorrelated and scales with the total observing time as t 1 2- .
Under these assumptions, the systematic error grows larger
than 60 ppm for timescales shorter than 1 hr, which is probably
unrealistic; however, this issue is not very relevant to our
calculations because such timescales are shorter than the typical
durations of transits and eclipses.
It is thought that the systematic error of the TESS cameras

will primarily stem from pointing errors that couple to the
photometry through non-uniformity in the pixel response.
These pointing errors come from the attitude control system,
velocity aberration, thermal effects, and mechanical flexure. In
addition, long-term drifts in the camera electronics can
contribute to the systematic error. The data reduction pipeline
will use the same co-trending techniques that were used by the
Kepler mission to mitigate these effects, but the exact level of
residual error that TESS will be able to achieve is unknown at
this time.

6.4.3. Saturation

Stars with T 6.8 will saturate the innermost pixels of the
PRF during the 2 s exposures. For reference, this saturation
magnitude is identified with a dotted line in Figure 14. These
saturated stars represent 3% of the target stars. As was the case
with the Kepler CCDs, the TESS CCDs are designed to
conserve the charge that bleeds from saturated pixels, and do
not use anti-blooming structures. Since the photometry of
saturated stars with Kepler has achieved the photon-counting
limit (Gilliland et al. 2011), we assume that the systematic
error is the same for the saturated stars and the unsaturated
stars.

13 http://www.stsci.edu/hst/stis/performance/background/skybg.html

14 http://www.stsci.edu/hst/stis/documents/handbooks/currentIHB/c06_
exptime6.html#689570
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While large photometric apertures will be needed to collect
all of the charge that bleeds from saturated stars, the read and
zodiacal noise are not important since the photometric
precision will be dominated by photon-counting noise and
systematic errors. Because the photometric precision will not
depend strongly upon the number of pixels used in the
photometric aperture, we do not model the saturated stars
differently in our simulation.

6.4.4. Cosmic Rays (CRs)

Typical back-illuminated CCDs have depletion depths of
10–50 μm. In contrast, the TESS CCDs have a 100 μm
depletion depth. This is desirable to enhance the quantum
efficiency at long wavelengths, but it also makes the detectors
more susceptible to CRs since the pixel volume is larger and
the maximum amount of charge collected per event can be
larger.

To assess the effect of CRs, we consider a typical CR flux of
5 events s−1 cm−2 and minimally ionizing events that deposit
100 e- μm−1 within silicon. Each pixel has an optical exposure
time of 2 s. The accumulated images also spend an average of
1 s in the frame-store region of the CCD, where they are still
vulnerable to CRs. Given these parameters, for each 2 minute
stack of values from one pixel, there is a 10% chance of
experiencing a CR event with an energy deposition above the
combined read and zodiacal noise of 110 e-. The distribution in
the energy deposition values has a peak near 1500 e-, which is
comparable to the photon-counting noise of bright stars
observed with 2-minute cadence. Electrons from CRs will
therefore add significantly to the photometric noise, but will not
be easily detected in the 2 or 30 minute data products.

CRs are far more conspicuous in the 2 s images. Therefore, it
is probably best to remove the contaminated pixel values before
they are combined into the 2 and 30 minute stacks. The Data
Handling Unit on TESS will apply a digital filter that rejects
outlier values during the stacking process either periodically or
adaptively. A possible side-effect of this filter, depending on
the algorithm used, is a reduction in the S/N to the degree that
uncontaminated data is also rejected in the absence of CRs.

The exact algorithm that will be used to mitigate CR noise is
still being studied. For the present simulations we have
budgeted for a 3% loss in the S/N. In the simulation code,
we simply raise the detection threshold (described in
Section 6.6) by 3% to compensate for the reduced S/N, and
we assume that there are no other residual effects from CRs.

6.5. Duration of Observations

The S/N of transits or eclipses will depend critically on how
long the star is observed. Figure 1 is a sky map showing the
number of times that TESS will point at a given location as a
function of ecliptic coordinates. As noted above, the simula-
tions assign coordinates to each star through a uniform random
distribution across the HEALPix tile to which it belongs. The
starʼs ecliptic coordinates are then converted to x and y pixel
coordinates for each TESS pointing. We tally the number of
pointings for which the target falls within the field of view of a
TESS camera. The total amount of observing time is calculated
as the total duration of all consecutive pointings.

The duty cycle of observations must also be considered. At
each orbital perigee, TESS interrupts observations in order to
transmit data to Earth and perform other housekeeping

operations. This takes approximately 0.6 days. We model this
interruption in the simulation, so each 13.6 days spacecraft
orbit actually results in 13.0 days of data.
The presence of the Earth or moon in the field of view of any

camera will also prohibit observations. We do not model this
effect since predicting their presence depends upon the specific
launch date of TESS. However, our simulations do show that if
observations are interrupted near TESSʼs orbital apogee in
addition to its perigee, then the planet yields are approximately
proportional to the duty cycle of observations.

6.6. Detection

The model for the detection process is highly simplified: we
adopt a threshold for the S/N, and we declare a signal to be
detected if the total S/N exceeds the threshold. In other words,
the detection probability is modeled as a step function of the
computed S/N. (The matched-filter technqiues of the TESS
pipeline probably have a smoother profile, such as a standard
error function Jenkins et al. 1996.) For transiting planets, all of
the observed transits contribute to the total S/N. For EBs, we
allow both the primary and secondary eclipses to contribute to
the total S/N.
The choice of an appropriate S/N threshold was discussed in

detail by Jenkins et al. (2002) in the context of the Kepler
mission. Their criterion was that the threshold should be
sufficiently high to prevent more than one “detection” from
being a purely statistical fluke after analyzing all of the data
from the entire mission. We adopt the same criterion here.
Since the number of astrophysical false positives is at least
several hundred (as discussed below), this criterion allows
statistical false positives to be essentially ignored.
To determine the appropriate threshold, we use a separate

Monte Carlo simulation of the transit search. We produce
2 105´ light curves containing uncorrelated, Gaussian noise
and analyze them for transits in a similar manner as will be
done with real data. Then, we find the S/N threshold that results
in approximately one statistical false positive. Each light curve
consists of 38,880 points, representing two 27.4 days TESS
pointings with 2 minute sampling. We chose a timeseries
length of two pointings rather than one to account for the stars
observed with overlapping pointings.
To search for transits, we scan through a grid of trial periods,

times of transit, and transit durations. At each grid point, we
identify the data points belonging to the candidate transit
intervals. The S/N is computed as the mean of the in-transit
data values divided by the uncertainty in the mean.
The grid of transit durations Θ starts with 28 minutes (14

samples) and each successive grid point is longer by 4 minutes
(2 samples). The grid of periods p is the range of periods that
are compatible with the transit duration. The periods are
calculated by inverting Equation (10):

( )P b(365 days)
78 minutes

* 1 . (23)
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We allow p to vary over a sufficient range to include plausible
stellar densities r r from 0.5 to 100. The fractional step size
in the period P PD is then 3ΔΘ/Θ, which has a minimum
value of 0.43 for the shortest periods. We consider orbital
periods ranging from 1.7 hr (which is below the period
corresponding to Roche limit) to 27.4 days (half of the nominal
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observing interval). The transit phase is stepped from zero to
the orbital period in increments of one-half the transit duration.

Figure 15 shows how the number of false-positive detections
scales with the detection threshold. We find that an S/N of 7.1
produces approximately one statistical false positive within the
library of 2 105´ light curves. By coincidence, this is equal to
the S/N threshold of 7.1 that was calculated for the Kepler
mission by Jenkins et al. (2002). TESS searches twice as many
stars as the 105 considered in the Kepler study, and over a
larger dynamic range in period; Kepler searches for planets
with longer periods using longer intervals of data.

To account for the expected reduction in S/N due to the CR
rejection algorithm (see Section 6.4.4), we adopt a slightly
higher threshold of 7.3 in this paper. In addition, we only
consider a transit or eclipse to be detected if two or more events
are observed. We also record the single events that exceed the
S/N threshold, but we do not count them as “detections” in the
tallies and the discussion that follows. The planets detected
with a single transit generally have longer periods than the
multiple-transit detections. It is also worth noting that TESS
may detect some single transits from the population of planets
with periods longer than a year, which we have not simulated at
all, because our sources for planet occurrence rates do not
extend to such long periods. The single-transit detections may
represent interesting opportunities to study the properties of
more distant planets. However, they will require additional
ground-based follow-up observations to determine the orbital

period and discriminate against astrophysical or statistical false
positives.

6.7. Selection of Target Stars

From the 2.11 107´ stars in the K 15s < catalog, we must
select the 2 105´ target stars for which pixel data will be
saved and transmitted with 2 minute time sampling. In our
simulation, the target stars are chosen according to the
prospects for detecting the transits of small planets, which
depend chiefly on stellar radius and apparent magnitude.
In the simulation, we have complete knowledge of the

properties of each star, which makes it straightforward to
determine whether a fiducial transiting planet with a given
radius and period could be detected with TESS. We adopt an
orbital period of 20 days; for each 27.4 days pointing that TESS
spends observing a star, we assume that two transits are
observed. The stellar radius and mass are used to calculate the
transit duration with a 20 days period, thereby determining the
total exposure time during transits. Then, we use the simplified
noise model from Section 2.3 that considers the read noise and
photon-counting noise of the star and ZL. We then check to see
if the fiducial transiting planet would be detectable with a S/N
exceeding of 7.3.
The number of stars meeting this detection criterion depends

strongly on the radius of the fiducial planet. Starting from small
values, we increase the radius until the number of stars for
which the planet would be detectable is 2 105´ . This is
achieved for R R2.25p = Å. Through this procedure, the target
star catalog is approximately complete for planets smaller than
2.25 RÅ with orbital periods shorter than 20 days. There is a
higher density of target stars assigned near the ecliptic poles
due to the longer duration of TESS observations in those
regions.
In selecting the target stars, we do not assume prior

knowledge of whether a star is part of a multiple-star system.
If it is, we assume that all components of the system fall within
a single photometric aperture, and they are all observed at the
2-minute cadence.
Figure 16 illustrates the selection of the target stars on a

Hertzsprung–Russell diagram. For clarity, we show a magni-
tude-limited subsample (K 6s < ) of our “bright” catalog as
well as a randomly selected subsample of the 2 105´ target
stars. Nearly all main-sequence stars with T 6000eff < K are
selected as target stars. Stars that are larger than the Sun are
only included if they have a sufficiently bright apparent
magnitude. White dwarfs could also be interesting targets for
TESS, but we do not include them in our simulation because the
occurrence rates of planets around white dwarfs is unknown.
Figure 17 shows the distribution of target stars as a function

of effective temperature, along with their apparent IC
magnitudes. The distribution in effective temperature of the
target stars is bimodal, with a sharp peak near 3400 K and a
broader peak near 5500 K.
In reality, it will not be quite as straightforward to select the

target stars for TESS. While proper-motion surveys (e.g.,
Lépine & Shara 2005) can readily distinguish red giants from
dwarf stars, it is much more difficult to distinguish dwarfs from
subgiant stars (Stassun et al. 2014). Ultimately, the selection of
the TESS target stars may rely on parallaxes from the ongoing
Gaia mission (Perryman et al. 2001). Errors in selecting the
target stars might be mitigated by simply observing a larger
number of stars at a 2-minute cadence. There is also the

Figure 15. Determination of the S/N threshold. Top: The statistical false-
positive rate for the TESS mission as a function of the detection threshold. We
do not want more than one statistical false positive to occur (red dashed line),
which dictates a threshold of 7.1. Bottom: The S/N distribution of transits near
the threshold from the full TESS simulation (presented in Section 7.1). The
small slope of this distribution near 7.1 suggests that the planet yield is not
extremely sensitive to the detection process or threshold.
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possibility of detecting transits in the full-frame images (FFIs),
which is described below.

6.8. FFIs

TESS will record and downlink a continuous sequence of
FFIs with an effective integration time of 30 minutes or shorter.
Transiting planets can still be detected with 30-minute
sampling, but the longer integration time of the FFIs reduces
the sensitivity to events with a short duration. Our simulation

estimates the yield of transiting planets from the FFIs in the
following fashion.
First, we identify all the transiting or eclipsing stars that are

not among the pre-selected 2 105´ target stars. We assign to
each system a random phase between the beginning of a 30-
minute window and the beginning of an eclipse. Next, we
calculate the number of 30-minute data points that are required
to cover the transit or eclipse duration. The data points at the
beginning and end of the series are omitted if they do not
increase the signal-to-noise. Finally, we compute the effective
depth of the transit or eclipse by averaging over all of the 30-
minute data points spanning the event. This step can reduce the
depth because some of the data points include time outside of
the transit or eclipse.
For transits with durations shorter than 1 hr, the 30-minute

integration time of the FFIs causes the apparent transit duration
to be lengthened and the apparent transit depth to become more
shallow. However, the depths and durations of transits with
longer durations are largely unaffected. The effects of time
averaging on the uncertainties in transit parameters derived
from light-curve fitting have been analyzed by Kipping (2010)
and Price & Rogers (2014).
Our calculated detection threshold of 7.3 only ensures that

no more than one statistical false positive is detected among the
2 105´ target stars. Since many more stars can be searched for
transits in the FFIs, the number of statistical false positives will
be much greater than one if the same threshold is adopted.

7. SURVEY YIELD

Having calculated the S/N for each eclipsing or transiting
system, we determine that a system is “detected” if the S/N

7.3⩾ in the phase-folded light curve and at least two transits or
eclipse events are observed. We thereby produce a simulated
catalog of detected planets and false positives.
Figure 19 is a sky map in ecliptic coordinates of the

simulated detections from one trial. Figure 18 shows the tallies
for each class of planet and false positive. For the 2 105´
target stars, the yields we show are the average over five trials
of the TESS mission; for the FFIs, the yields are reported from a
single trial since the computation time is much longer for
this case.
The uncertainties that are printed in Figure 18 (for planets

transiting the 2 105´ target stars) are based on the two
primary sources of statistical uncertainty: the Poisson fluctua-
tions in the number of detected planets and the statistical
uncertainties in the planet occurrence rates (which are partly
due to Poisson fluctuations in the Kepler sample of detected
planets). We propagate the uncertainties in the occurrence rates
by running 100 trials of the simulation. In each trial, the
occurrence rates were perturbed by adding random Gaussian
deviates to the quoted occurrence rate with the standard
deviation set to the quoted uncertainty in the occurrence rate. In
this way, the standard deviation in the number of planet
detections across the 100 trials is essentially the quadrature sum
of the Poisson fluctuations and the uncertainties propagated
from the input occurrence rates. Poisson fluctuations are
dominant for the categories of planets where the mean number
of detected planets is small, such as habitable-zone planets.
The preceding calculations do not take into account

systematic uncertainties. Among the sources of systematic
uncertainty are the models of galactic structure and extinction,
the stellar LF, the stellar mass–radius–luminosity relations, and

Figure 16. Selection of the 2 105´ target stars on a Hertzsprung–Russell
diagram. To reduce the number of plotted points to a manageable number, the
blue points represent only those simulated stars with apparent K 6s < , and the
red points are a random selection of 1% of the target stars. Nearly all main-
sequence dwarfs smaller than the Sun are selected as target stars; a decreasing
fraction of larger stars are selected.

Figure 17. Distributions of apparent IC magnitude and effective temperature of
the the TESS target stars. To reduce the number of plotted points to a
manageable number, the top panel shows a random subset of 10% of the target
stars.
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any bias in the planet occurrence rates. It is beyond the scope of
this work to gauge the uncertainties in all of these inputs and
the resulting impact on the planet yield. We can, however,

make some general comments. We expect that the uncertainties
in galactic structure and extinction will only be significant near
the galactic plane, where it will be more difficult for TESS to
detect planets due to crowding. Regarding the stellar LF, it
seems plausible that there are residual biases at the level of
≈10%, given that we found it necessary to adjust the model LF
by ≈30% across all absolute magnitudes to match the various
sets of observational inputs. When coupled with uncertainties
in the stellar mass–radius–luminosity relations, we would guess
that the net impact on the planet detection statistics is at the
level of ≈30%. Regarding biases in the planet occurrence rates
upon which our simulation is based, it seems plausible that they
are of the same order as the reported statistical errors, which
have a median of ≈40% across all planetary sizes and periods.
Therefore, the systematic uncertainties in the number of planet
detections could be as large as 50%.
The number of planet detections from the FFIs is sufficiently

large that the systematic uncertainties almost certainly
dominate over the statistical uncertainties, and therefore, the
results should probably be valid to within a factor of two. For
the same reason, we have not reported statistical uncertainties
for the yields of astrophysical false positives. In addition to the
systematic uncertainties mentioned above, there are additional
uncertainties arising from the models for the stellar MF, mass
ratio distribution, and eccentricity/period distributions. Our
comparison to the Kepler EB catalog indicates that for low
galactic latitudes these uncertainties are of an order of 80% (see
Figure 10).

7.1. Transiting Planets

Total number of detections—Based on five trials with the
2 105´ target stars, we expect TESS to find 70 ± 9 planets
smaller than 1.25 RÅ, 486 ± 22 planets in the range 1.25–2 RÅ,
1111 ± 122 planets in the range 2–4 RÅ, and 67 ± 8 planets
larger than 4 RÅ. Table 6 presents the catalog of planets from
one of these five trials. Figure 20 shows the distribution of
detected planets plotted on the radius-period plane, in the same
fashion that the input planet occurrence rates were plotted in
Figure 8.
The top panel of Figure 19 maps the simulated planet

detections in ecliptic coordinates. Detections among the target

Figure 18. Mean numbers of planets and eclipsing binaries that are detected in the TESS simulation. Results are shown for the 2 105´ target stars that are observed
with 2-minute time sampling as well as stars in the full-frame images that are observed with 30-minute sampling. The statistical error from Poisson fluctuations and the
input planet occurrence rates are shown. For eclipsing binaries, additional systematic error could be as high as ≈50% (see text).

Figure 19. Sky maps of the simulated TESS detections in equal-area
projections of ecliptic coordinates. The lines of latitude are spaced by 30°,
and the lines of longitude are spaced by 60°. Top: Planet detections. Red points
represent planets detected around target stars (2-minute cadence). Blue points
represent planets detected around stars that are only observed in the FFIs (30-
minute cadence). Note the enhancement in the planet yield near the ecliptic
poles, which TESS observes for the longest duration. Note also that the inner 6°
of the ecliptic is not observed. Bottom: Astrophysical false-positive detections,
using the same color scheme. For clarity, only 10% of the false positives
detected in the full-frame images are shown. (All other categories show 100%
of the detections from one trial.) Note the enhancement in the detection rate
near the galactic plane, which is stronger for false positives than for planets.
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stars (red points) are enhanced in the vicinity of the ecliptic
poles because of the overlapping pointings they receive. Apart
from that conspicuous feature, the detections are nearly
uniformly distributed across the sky. The detections from stars
that are only observed in the full-frame images (blue dots)
show a strong enhancement near the galactic plane. This is due
to the vast number of faint and distant stars around which giant
planets can be detected.

Habitable-zone planets—Of the 556 planets smaller than 2
RÅ, a subset of 48 ± 7 have a relative insolation on the range

S S0.2 2< <Å and are therefore near the habitable zone. We
also expect a smaller subset of 14 ± 4 to be within the more
restricted zone defined by Kopparapu et al. (2013). This
definition of the habitable zone extends approximately from

S S0.2 1< <Å , with the exact bounds depending on stellar
effective temperature. Figure 21 shows the distribution of S SÅ
and Teff for the simulated detections in the vicinity of the
habitable zone. Because the sensitivity of TESS favors short
periods, the potentially habitable planets must orbit low-mass,
cool stars with T 4000eff  K. Furthermore, the yield of such
planets depends strongly upon the definition of the inner edge
of the habitable zone, but much less so upon the outer edge.

Small planets with measurable masses—The smallest
planets will be of particular interest for mass measurement
since there are presently very few small (and potentially rocky)
planets with measured masses and sizes. Among the 70
simulated planets smaller than 1.25 RÅ, the median period is
2.1 days, and the median stellar effective temperature is
3450 K. The median IC magnitude is 11.6.

Survey completeness—The degree of completeness of the
TESS survey can be assessed by comparing the simulated
planet detections against the total number of transiting planets
on the sky (as discussed in Section 4.1). Plotted in Figure 22
are the cumulative numbers of transiting planets as a function
of the limiting apparent magnitude of the host star. We make
the comparison for short-period planets around Sun-like and
smaller stars for planets of different sizes as well as small
planets near the HZ. For planets with R R2p < Å, the

completeness of the TESS survey is limited by instrumental
noise. For planets with R R4p > Å, the completeness is limited
by the maximum number of target stars (2 105´ ).
Diluting flux—Whenever the photometric aperture contains

flux from neighboring stars, the measured transit depth will be
smaller than it would be if the star were observed in isolation. If
this effect is not taken into account (by using observations with
higher angular resolution), then the planetʼs radius will be
underestimated. The source of the “diluting flux” can be a star
that is gravitationally bound to the target star, or it can be one
or more completely unrelated stars along the same line-of-sight.
In our simulation, we find that 12% of detected planets suffer
dilution by more than 21%> , making them vulnerable to radius
underestimation by 10%> . For 6% of planets, the radii could be
underestimated by 20%> . We note that we do not consider
cases of underestimated planet sizes to be “false positives,” in
contrast to Fressin et al. (2013). Those authors considered the
detection of transits with significant dilution to be a false
positive because they were concerned with determining the
occurrence rates of planets as a function of planet radius.
A separate scenario in which the transit depth can be diluted

is when the transiting planet is actually orbiting a background
star rather than the target star. Simulating these background
transiting planets is a more computationally challenging
problem which we conducted separately from the main
simulations. We generated planets around the background
stars represented by in “faint” star catalog and simulated the
detection of the transiting planets blended with target stars. We
found this type of transit detection to be very rare. Of the
2 105´ target stars, we find that only ∼1 planet transiting a
background star will be detectable with TESS. In the 30-minute
FFIs, approximately 70 such planets might be detected. The
transit depths of these planets must be very deep to overcome
the diluting flux of the brighter target star. In the simulations,
the median radius of blended transiting planets is R17 Å. Our
conclusion is in agreement with that of Fressin et al. (2013),
who found that transits of background stars are a less important

Figure 20. Distribution of detected planets on the period–radius plane. The
shading of the 2D histogram is the same as in Figure 8. The sawtooth patterns
in the radius and period histograms are an artefact of the planet occurrence rates
having coarse bin sizes in radius and period combined with the sensitivity of
TESS favoring planets with larger radii and shorter periods.

Figure 21. Small planets in and near the habitable zone from one trial plotted
against stellar effective temperature and relative insolation S SÅ. The dashed–
dotted lines show the inner (green) and outer (blue) edges for the HZ defined
in Kopparapu et al. (2013). The vertical red dashed line indicates S S 2=Å .
The gray points represent planets for which only a single transit is detected.
(We note that this is the only figure in this paper that includes single-transit
detections.)
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source of detections than transits of planets around gravita-
tionally bound companion stars (see their Figure 10).

Single-transit detections—In a few notable cases, the S/N of
a transit exceeds the threshold of 7.3, but only a single transit is
observed. We expect 110 such planets to be detected with one
transit. These are not counted as detections in the tallies given
above, but they are included in Figure 21 as gray points. These
planets have longer periods and lower equilibrium temperatures
than the rest of the TESS sample. There may even be additional
single-transit detections from planets with orbital periods
exceeding 1 year, which we have not modeled at all. Although
the periods will not be well-constrained using TESS data alone,
and the probability of a “detection” being a statistical fluke is
higher, it may still be worthwhile to conduct follow-up
observations of these stars. The single-transit detections have
a median planet size of ∼3 RÅ, a median orbital period of
∼30 days, and a median insolation of 1.9 SÅ.

7.2. False Positives

Among the 2 105´ target stars, TESS detects 1103 ± 33 EB
systems along with the transiting planets. The uncertainty in
this figure is based only on the Poisson fluctuations; we
acknowledge that the true uncertainty is likely to be
significantly larger. Based on our comparison with the Kepler
EB catalog (see Section 4.2), the uncertainty may be as large as
80% for relatively low galactic latitudes.

The false-positives can be divided into the following cases:

1. EB: the target star is an EB with grazing eclipses. There
are 250 ± 16 detections of EBs.

2. Hierarchical EB (HEB): the target star is a triple or
quadruple system in which one pair of stars is eclipsing.
There are 410 ± 20 detections of HEBs.

3. BEB: the target star is blended with a BEB. There are 443
± 20 detections of BEBs.

These tallies are also illustrated in Figure 18. The bottom panel
of Figure 19 shows a sky map of the astrophysical false
positives in the same coordinate system as the top panel. The
surface density of false positives is a much stronger function of
galactic coordinates than the density of planet detections, for
binary eclipses are deeper than planetary transits and can be
detected out to greater distances. The period and depth
distributions of the EB population is discussed in Section 8.6.

8. DISTINGUISHING FALSE POSITIVES FROM PLANETS

Experience has shown that the success of a transit survey
depends crucially on the ability to distinguish transiting planets
from astrophysical false positives. Our simulations suggest that
for TESS, the number of astrophysical false positives will be
comparable to the number of transiting planet detections. In
many cases, it will be necessary (or at least desirable) to
undertake ground-based follow-up observations to provide a
definitive classification.
However, there will also be useful clues within the TESS

data that a candidate is actually an EB, even before any follow-
up observations are undertaken. These clues are: (1) ellipsoidal
variations, (2) secondary eclipses, (3) lengthy ingress and
egress durations, or (4) centroid motion associated with the
eclipse events. In this section, we investigate the prospects for
using these four characteristics to identify false positives with
TESS data alone. Specifically, we determine the number of
cases, summarized in Table 5, for which any of these
characteristics can be measured with an S/N of 5 or greater.
This statistic indicates that the information will be available to
help make the distinction between planet and false positive.
The next step would be to combine all of the measurable

Figure 22. Completeness of the TESS survey. For each category of planet, we plot the cumulative number of transiting planets as a function of the limiting apparent
magnitude of the host star. Only planets with P 20< days and host stars with T 7000eff < K and R R1.5<  are considered. The colored lines show the distributions
for all transiting planets in the simulation; the black lines show the simulated TESS detections. The completeness is partly limited from the selection of the 2 105´
target stars, which is evident for R R4p > Å planets.
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characteristics in a self-consistent manner and attempt to arrive
at a definitive classification. This is a complex process that we
have not attempted to model here.

8.1. Ellipsoidal Variations

The members of a close binary exert strong tidal gravita-
tional forces on one another, causing their photospheres to
deform into ellipsoids. These deformations lead to ellipsoidal
variations in the light curve. A model for these photometric
variations was presented by Morris & Naftilan (1993). Mazeh
(2008) gave a simple expression for the dominant component,
which has a period equal to half of the orbital period, and a
semi-amplitude
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where R1 is the primary radius, a is the orbital distance, i is the
orbital inclination, u1 is the linear limb-darkening coefficient, τ
is the gravity-darkening coefficient, and q is the mass ratio. To
estimate the amplitude of this effect for our simulated TESS
detections, we adopt an appropriate value of u1 for each star
using the tables of Claret et al. (2012, 2013), which come from
the PHOENIX stellar models. For gravity darkening, we use a
value of τ = 0.32 for all stars, which is thought to be
appropriate for stars with convective envelopes (Lucy 1967).

The formal detection limits for ellipsoidal variations are
quite low because the signal is present throughout the entire
light curve rather than being confined to eclipses of a narrower
duration. Since the period and phase are fixed from the
observed eclipses, we model the detection of the ellipsoidal
variations as a cross-correlation of the light curve with a cosine
function of the appropriate period. If the fractional uncertainty
in the flux of each data point is σ, and the total number of data

points is N, then the S/N of ellipsoidal variations is
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Here, D denotes the dilution of the target star in the
photometric aperture, which is defined in Section 6.3. Due to
this factor, ellipsoidal variations from BEBs are more difficult
to detect since their eclipses are usually more diluted than EBs
and HEBs. The factor of 2 arises from the rms value of a
cosine function.
It seems likely that correlated noise will prevent the

detection limit from averaging down to extremely low values
as the duration of observations is extended. Somewhat
arbitrarily, we require the semi-amplitude of the ellipsoidal
variations to exceed 10 ppm, in addition to the criterion
S N 5EV > , to be counted as “detectable.” We also require that
the orbital period of the binary, which is twice the period of
ellipsoidal variations, is shorter than one spacecraft orbit (13.6
days) out of concern that thermal or other variations of the
satellite will induce systematic errors with a similar frequency.
Under these detection constraints, shown in Figure 23,
ellipsoidal variations are detected for 34% of the EBs in the
simulation. The majority of these are grazing-eclipse binaries
rather than HEBs or BEBs. The results are summarized in the
second column of Table 5.

8.2. Secondary Eclipse Detection

Another key difference between EBs and transiting planets is
that the secondary star in a binary is more luminous than a
planetary companion. This distinction is somewhat blurred
when comparing brown-dwarf and hot-Jupiter companions but
is quite clear between ordinary stars and lower-mass planets. If
the two stars in a binary have nearly the same surface
brightness, then the depths of the primary and secondary
eclipses will be indistinguishable. In this case, the system might

Table 5
Methods of Distinguishing False Positives from Transiting Planets

Na Ellip.b
Sec.
Ecl.b In/Egressb Centroidb Anyc

EB 250 79.9 80.2 92.5 31.7 98.6
HEB 410 43.1 73.4 74.5 71.2 93.0
BEB 443 0.8 30.4 10.9 69.1 74.1

All FP 1103 34.4 57.7 53.0 54.2 86.7

Planetsd

R4< Å 1667 0.0 0.0 1.9 6.3 1.9

R4> Å 67 0.0 0.3 40.7 9.6 40.7

Notes.
a Mean number of each type of system that is detected.
b The central four columns indicate the percentage of systems each with
detectable ellipsoidal variations, secondary eclipses, ingress and egress, and
centroid motion.
c The percentage of systems for which at least one of these four characteristics
is detectable.
d Same, but restricted to planets larger or smaller than R4 Å. For large planets
the ingress/egress and the secondary eclipses are occasionally detectable.

Figure 23. Ellipsoidal variations of the primary star among the simulated TESS
detections. Short-period systems give larger ellipsoidal variations. We consider
the variations to be detectable if the semi-amplitude is greater than 10 ppm and
the S/N exceeds 5 (horizontal dashed line). We also require the orbital period
of the system to be shorter than the orbital period of TESS (vertical dashed line)
due to systematic errors. A significant number of eclipsing binaries and HEBs
can be identified on this basis. Only a small number of BEBs, and zero planets,
give rise to detectable ellipsoidal variations.
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appear to be a planet with an orbital period equal to half of the
true orbital period of the binary. However, if the surface
brightnesses of the stars differ and both eclipses are detected
with a sufficiently high S/N, then the secondary eclipse can be
distinguished from the primary eclipse and the system can be
confidently classified as an EB.

To estimate the number of cases for which the primary and
secondary eclipses are distinguishable, we identify the
simulated systems for which signal-to-noise of the secondary
eclipses, S/N2, is 5> , and the S/N in the difference between the
primary and secondary eclipse depths, S N1 2- , is also 5> . The
latter quantity is calculated as
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where 1,2d denote the depths of the eclipses and 1,2s denote the
noise in the relative flux over the observed duration of each
eclipse. Figure 24 shows the detectability of secondary eclipses
by plotting S N1 2- versus S/N2. The secondary eclipse can be
distinguished from the primary eclipse for the systems that lie
in the upper-right quadrant of the plot.

The results are also summarized in the third column of
Table 5. A majority of the false positives have detectable
secondary eclipses that are distinguishable in depth from the
primary eclipses. The notable exceptions include the HEBs in
which the eclipsing pair consists of equal-mass stars (q 1» ).
In such cases, 1 2d d» and it is impossible to distinguish
between primary and secondary eclipses. For the BEBs,
the difficulty is that the eclipse depths are often strongly
diluted and the secondary eclipses are not detectable. Most
planets are too small and faint to produce detectable secondary
eclipses in the TESS bandpass. In the simulations, the fraction
of detected planets with detectable secondary eclipses is
only 0.01%.

8.3. Ingress and Egress Detection

EBs can also be distinguished from transiting planets based
on the more prolonged ingress and egress phases of stellar
eclipses. As above, we adopt an S/N threshold of 5 for the
ingress/egress phases to be detectable. The average “signal”
during ingress and egress is half the maximum eclipse depth,
and the “noise” is calculated for the combined durations of
ingress and egress. In order to ensure that the ingress/egress can
be temporally resolved, we require the duration of the ingress
or egress to be more than twice as long as the duration of an
individual data sample (2 minutes for the target stars and
30 minutes for the rest of the stars).
Since transiting planets generally have ingrees or egress

phases lasting a few minutes, TESS will only be able to detect
the ingress/egress for a small fraction (≈10%) of transiting
planets observed with 2 minute sampling. Only large planets
observed in the 30 minutes. FFIs would have resolvable
ingress/egress. However, the the ingress/egress phases of EBs
are more readily detectable.
We note that the detection of the ingress/egress alone does

not classify a signal as an EB. One would next examine the
period and shape of the eclipse signals to determine whether the
radius of the eclipsing body is consistent with the observed
depth.
Figure 25 illustrates the detection of ingress/egress for

planets and false positives. The fourth column of Table 5
summarizes the results. Approximately 70% of the EB systems
that TESS detects among the target stars might be classified as
false positives by virtue of a lengthy ingress or egress duration.
For stars that are only observed at a 30-minute cadence, this
method is not as effective.

8.4. Centroid Motion

Another diagnostic of false positives, particularly BEBs, is
the centroid motion that accompanies the photometric varia-
tions. If there are detectable shifts in the centroid of the target

Figure 24. Distinguishing secondary eclipses from primary eclipses based on
TESS photometry. The vertical dashed red line shows where the secondary
eclipses can be detected at S N 52 > . The horizontal dashed red line shows
where the difference in eclipse depths can be measured with S N 51 2 >- .
Points in the upper-right quadrant of the plot meet conditions, so the secondary
eclipse can be distinguished from the primary eclipse. For 58% of the eclipsing
binaries that TESS detects in the simulation, it is possible to classify them as
false positives from the TESS data alone.

Figure 25. Detectability of the ingress and egress phases of eclipses observed
with TESS. We require the time-averaged ingress/egress depth (half of the full
depth) must be detectable with S/N > 5 from data obtained during ingress/
egress (horizontal dashed line). Also, we require the ingress/egress duration to
be longer than the 2-minute averaging time of each sample (vertical dashed
line). Filled circles represent systems for which the ingress/egress are
detectable according to these criteria.
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star during transit or eclipse events, it is more likely that the
target is a blended EB rather than a transiting planet or an
eclipse of the target star itself. Transits or eclipses of the target
star can still have significant centroid motion if another bright
star is blended with the target.

With real data, one could interpret the amplitude and
direction of the measured centroid shift using the known
locations of neighboring stars in order to determine the most
likely source of the photometric variations. This is a
complicated process to simulate, so we simply investigate the
issue of the detecting the centroid shift. As verified in our
simulations, the systems with detectable centroid shifts are
much more likely to be false positives than transiting planets.

We simulate the detectability of centroid shifts by calculating
the two-dimensional centroid (center-of-light) of the target star,
Cx and Cy, within the 8 × 8 synthetic images described in 6.2.
We calculate the centroids both during and outside of the loss
of light to find the magnitude and direction of the centroid shift.
Next, we calculate the uncertainty in the centroid Cxs and Cys ,
which stems from the photometric noise of each pixel. If each
pixel i j( , ) has coordinates x y( , ), and its photometric noise
relative to the total flux is denoted by i j,s , then the noise
propagates to the centroid measurement uncertainty through

( )( )x C y Cand .
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In an analogous fashion to determining the optimal photometric
aperture, we select the pixels that maximize the S/N of the
centroid measurement. Finally, we project the x and y centroid
uncertainties in the direction of the centroid shift. The S/N of
the centroid measurement is the magnitude of the centroid shift
divided by the centroid uncertainty projected in the direction of
the centroid shift. We consider a centroid shift to be detectable
if the signal-to-noise is 5 or greater.

In practice, the centroid measurement uncertainty could be
much larger if the spacecraft jitter does not average down
during the hour-long timescales of transits and eclipses. On the
other hand, monotonic drifts in the spacecraft pointing during a
transit or eclipse are less likely to impact the centroid
measurement since the motion is common to all stars.

We find that centroid shifts can be detected for 69% of the
BEBs and HEBs. These results are illustrated in Figure 26 and
summarized in column 5 of Table 5. The BEBs have a higher
fraction of detectable centroid shifts from the larger angular
separations between the eclipsing system and the target star.
Only 6% of planet transits produce a detectable centroid shift.

8.5. Imaging

As shown in Table 5, the simulations suggest that blended
EBs are the type of false positive that is most difficult to
identify based only on TESS data. Assuming that all of the
false-positive tests described in the previous sections are
applied, approximately 150 of the 1103 ± 33 false positives
would fail to be identified. The large majority (78%) of these
more stubborn cases are BEBs.

If archival images or catalogs do not reveal a system in the
vicinity of a TESS target star that is consistent with any
measurable centroid motion, then additional imaging is needed.
An effective way to identify these BEBs is through ground-

based imaging with higher angular resolution than the TESS
cameras. A series of images spanning an eclipse could reveal
which star (if any) is the true source of variations. Due to the
large pixel scale of the TESS optics, it will not be difficult to
improve upon the angular resolution with ground-based
observations. Even modest contrast and a well-sampled PSF
can resolve many ambiguous cases.
Figure 27 illustrates the requirements on angular resolution

and contrast. For each BEB, we have plotted the angular
separation and the J-band magnitude difference between the
BEB and the target star. Natural-seeing images with 1″
resolution would be sufficient to resolve all of the simulated

Figure 26. Measurement of the shift in the centroid of the target star during
eclipses for various types of detections. Eclipses from background binaries give
the largest centroid shifts for a given depth. If the TESS data permits a
measurement of the centroid shift with S/N 5> , we consider the shift to be
detectable and plot it with a filled circle.

Figure 27. Magnitude differences and angular separations between BEBs and
the associated target star. Gray dots show the BEBs for which the TESS
photometric data already provides some evidence that the source is a false
positive through ellipsoidal variations, secondary eclipses, ingress/egress, or
centroid motion. Black dots are the BEBs for which none of those effects are
detectable; ground-based images spanning an eclipse might be the most useful
discriminant in such cases.
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BEBs. In more difficult cases, adaptive optics might be
necessary to enable high contrast.

Figure 28 shows the photometric requirements to detect the
planets as well as BEBs and other eclipsing systems for which
the TESS photometry cannot distinguish whether the candidate
is a false positive. We plot the eclipse depth against apparent
system magnitude to indicate the photometric precision that is
required of the facilities performing these observations.

8.6. Statistical Discrimination

The false positives and transiting planets have significantly
different distributions of orbital period, eclipse/transit depth,
and galactic latitude. Therefore, the likelihood that a given
source is a false positive can be estimated from the statistics of
these distributions in addition to the characteristics described
above that can be observed on a case-by-case basis.

Figure 29 shows the distributions of apparent period and
apparent depth of the eclipses caused by transiting planets and
false positives. Here, the “apparent period” is the period one
would be likely to infer from the TESS photometry; if the
secondary eclipse is detectable but not distinguishable from the
primary eclipse, one would conclude that the period is half of
the true orbital period. The “apparent depth” takes into account
the dilution of an eclipse from background stars or, in the case
of BEBs, the dilution from the target star.

These populations are seen to be quite distinct. EB systems
tend to have larger depths and shorter periods than planets.
Simply by omitting sources which have eclipse/transit depths
>5% or periods <0.5 days, approximately 83% of the false
positives among the target stars would be discarded.

The galactic latitude b of the target also has a strong
influence on the likelihood that a given source is a false
positive. Figure 30 shows the fraction of detections that are due
to planets, BEBs, and other false positives as a function of
galactic latitude. Only the events with apparent depth <10% are
included in this plot. For b <∣ ∣ 10◦, the density of background

stars is very high, and any observed eclipse is far more likely to
be from a BEB than any other kind of eclipse. For b >∣ ∣ 20°,
planets represent a majority over false positives. A weaker
dependence on galactic latitude is seen for grazing-eclipse
binaries and HEBs.

9. PROSPECTS FOR FOLLOW-UP OBSERVATIONS

We now turn to the prospects for follow-up observations to
characterize the TESS transiting planets. As already discussed
in Section 8.5, it is desirable to obtain transit light curves of the
planetary candidates with a higher signal-to-noise than the
TESS discovery. The photometry could be carried out with
ground-based facilites or with upcoming space-based facilities
such as CHEOPS (Fortier et al. 2014). This data can be used to
look for transit timing variations and to improve our estimates
of relative plantary radii.
Constraining the absolute planetary radii of the TESS planets

will benefit from additional determinations of the radii of their
host stars. Interferometric observations may be possible for the
brightest and nearest host stars. For this reason, we report the
stellar radii and distance moduli (in the “DM” column) of
Table 6, allowing for estimation of angular diameters.
Asteroseismology can also be used to determine the radii of

host stars if finely sampled, high-precision photometry is
available. Such data could come from the TESS data or the
upcoming PLATO mission (Rauer et al. 2014). There is
discussion of having TESS record the pixel values of the most
promising targets for asteroseismology with a time sampling
shorter than 2 minutes.
Next, we turn to the follow-up observations that TESS is

designed to enable: radial-velocity observations to measure a
planetʼs mass and spectroscopic observations to detect and
characterize a planetʼs atmosphere.

9.1. Radial Velocity

The TESS planets should be attractive targets for radial-
velocity observations because the host stars will be relatively
bright and their orbital periods will be relatively short. Both of
these factors facilitate precise Doppler spectroscopy. To
evaluate the detectability of the Doppler signal we assign
masses to the simulated planets using the empirical mass–
radius relation provided by Weiss et al. (2013). For
R R1.5p < Å, the planet mass Mp is calculated as
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and for R R1.5p Å⩾ , the mass is calculated as
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This simple one-to-one relationship between mass and radius is
used here for convenience. In reality, there is probably a
distribution of planet masses for a given planet radius (see, e.g.,
Rogers 2014).
From the masses calculated here, we then find the radial-

velocity semiamplitude K, which is reported in Table 6.
Figure 31 shows K values of each planet detected in one trial as
a function of the apparent magnitude of the host star. Because
of the short periods, even planets smaller than 2 RÅ will

Figure 28. Follow-up photometry of the TESS candidates, which are a mixture
of planets and astrophysical false positives. We only show the false positives
that cannot be ruled out from the TESS photometry, which are primarily BEBs.
In order to show the photometric precision that is required to detect a transit or
eclipse, we plot the depth against apparent magnitude. We assume that the
BEBs are resolved from the target star (see Figure 27), so the full eclipse depth
and apparent magnitude of the binary are observable. An observation limited
by photon-counting noise designed to detect most of the planets (dashed line)
is sufficient to detect the eclipsing binaries as well.
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produce a radial-velocity semiamplitude K close to 1 m s−1,
putting them within reach of current and upcoming
spectrographs.

9.2. Atmospheric Characterization

The composition of planetary atmospheres can be probed
with transit spectroscopy. Such measurements can be carried
out with space-based or balloon-based facilities, or even from
ground-based facilities if the resolution is high enough to
separate telluric features from stellar and planetary features.
The enhanced sensitivity of TESS to transiting planets near the
ecliptic poles will provide numerous targets for observations
inside or near the continuous viewing zone of the James Webb
Space Telescope (JWST). The prospects for follow-up with
JWST have been detailed in Deming et al. (2009) and
elsewhere. More specialized space missions, including
FINESSE (Deroo et al. 2012) and EChO (Tinetti et al.

2012), have also been proposed to perform transit
spectroscopy.
Here, we use the simulation results to explore the relative

difficulty of transit spectroscopy of the TESS planets
independent from the facility that is used to observe them.
We compute a figure-of-merit Hd , which is the fractional loss-
of-light from an annulus surrounding the planet (with radius
Rp) and a thickness equal to the scale height, H:

HR

R

2
. (30)H

p

2
d =



The scale height is calculated from

H
k T R

GM m
, (31)

B p p
2

p pm
=

where Mp is the planet mass and mp is the proton mass. We
calculate the temperature of the planet, Tp, assuming it is in
radiative equilibrium with zero albedo and isotropic re-
radiation (see Equation (12)). We assume a mean molecular
weight μ of 2 amu, which corresponds to an atmosphere
consisting purely of H2. In any other case, the atmospheric
transit depth Hd is reduced by a factor of μ/2. An Earth-like
atmosphere would have μ = 29 amu, and a Venusian
atmosphere would have μ = 44 amu.
Figure 32 shows Hd for all of the detected planets in the

simulation as a function of the apparent magnitude of the host
star. For a molecular species to be identifiable, one must
observe transits with a sensitivity on the order of Hd both in and
out of the absorption bands of that species. The detection of
various species therefore depends on the depth of the
absorption bands and the spectral resolution used to observe
them. The presence of clouds and haze can reduce the
observable thickness of the atmosphere.
Next, we look specifically at the number of planets with a

relative insolation S S0.2 2< <Å , placing them within or
near the habitable zone. These planets are especially attractive
targets for atmospheric spectroscopy because they may have
atmospheres similar to that of the Earth, and may present
“biomarkers” indicative of life. Such observations are most

Figure 29. Grayscale showing the likelihood that an eclipse observed with TESS is a false positive or transiting planet based on its apparent period and depth. Left:
The fraction of detections from five trials that are transiting planets; the planets from one trial are plotted as red dots. Right: The fraction of all eclipses that are due to
false positives; the red dots are individual false positives.

Figure 30. Likelihood that an eclipse observed with TESS is a false positive or
transiting planet as a function of galactic latitude. Planets tend to be detected at
higher galactic latitude while background eclipsing binaries (BEBs) dominate
detections at low galactic latitude. Here, we consider all eclipses with an
apparent depth <10%.
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Table 6
Catalog of Simulated TESS Detections

α (°) δ (°) Rp P (days) S SÅ K (m s−1) R (R) Teff (K) V IC J Ks DM Dil. log ( )V10 s S/N Mult.

0.439 45.217 3.31 9.14 361.7 2.03 1.41 6531 8.47 7.97 7.63 7.41 5.00 1.00 −4.87 16.8 1
0.480 −66.204 2.19 14.20 2.1 3.11 0.32 3426 15.08 12.83 11.56 10.79 3.90 1.01 −4.22 12.3 3
0.646 42.939 1.74 4.96 235.0 1.66 0.95 5546 10.12 9.35 8.81 8.41 4.95 1.00 −4.64 7.5 0
0.924 −26.065 1.48 2.16 1240.1 1.95 1.12 5984 8.06 7.42 6.98 6.67 3.65 1.00 −4.50 8.4 0
1.314 −24.954 2.29 9.75 5.9 2.95 0.42 3622 14.19 12.15 10.99 10.19 4.10 1.00 −4.44 8.6 2
1.384 10.606 2.32 13.99 2.1 3.32 0.32 3425 15.04 12.79 11.52 10.74 3.85 1.07 −3.50 7.8 2
1.783 −71.931 3.29 8.42 4.5 5.23 0.34 3444 15.29 13.06 11.79 11.02 4.25 1.00 −4.39 26.4 2
1.789 −9.144 2.81 5.62 2.6 9.15 0.17 3228 15.05 12.52 11.13 10.36 1.85 2.28 −4.41 28.7 3
1.948 −16.995 17.15 1.34 10164.5 16.03 2.11 6668 7.51 7.05 6.72 6.53 5.00 1.00 −4.42 457.4 2
2.172 −15.533 4.80 17.14 341.2 2.10 2.11 6668 7.51 7.05 6.72 6.53 5.00 1.00 −4.68 13.1 2
4.071 9.507 1.97 11.45 1.5 4.09 0.22 3300 14.96 12.55 11.21 10.44 2.65 1.00 −4.50 17.7 2
4.634 −23.500 4.71 5.17 116.3 4.60 0.80 5000 9.52 8.54 7.85 7.32 3.35 1.00 −4.68 64.0 0
4.788 78.625 1.56 0.62 71.2 8.92 0.22 3283 15.94 13.50 12.14 11.38 3.50 1.00 −4.43 16.9 2
5.322 −55.554 2.85 18.16 2.4 3.01 0.41 3592 14.23 12.15 10.98 10.18 4.00 1.00 −4.46 15.5 2
5.704 50.726 2.24 2.75 308.3 2.82 0.80 5188 11.28 10.40 9.77 9.28 5.35 1.01 −4.67 10.6 2
5.951 −28.675 3.75 17.75 4.3 3.46 0.50 3844 11.73 9.94 8.89 8.08 2.55 1.00 −4.29 52.5 1
6.166 32.455 1.11 0.79 53.4 2.95 0.22 3304 14.81 12.41 11.08 10.32 2.65 1.00 −3.50 8.5 2
6.521 −4.048 1.53 7.51 4.8 2.78 0.32 3435 13.66 11.43 10.17 9.41 2.50 1.00 −3.49 8.3 2
6.662 −79.377 2.31 1.89 45.5 5.48 0.40 3551 14.42 12.30 11.10 10.31 4.00 1.00 −3.49 19.9 0
7.592 −79.924 7.72 3.92 320.7 7.41 0.91 5623 11.06 10.32 9.79 9.40 5.85 1.00 −4.54 96.5 1
8.071 −77.185 1.49 1.02 887.9 3.50 0.70 5030 8.00 7.05 6.40 5.85 1.60 1.00 −4.74 40.7 1
8.396 −53.966 2.38 5.59 6.8 4.55 0.31 3442 14.14 11.91 10.66 9.89 2.95 1.25 −3.60 20.3 3
8.919 67.419 2.94 29.94 1.3 2.61 0.42 3611 13.33 11.30 10.14 9.35 3.20 1.09 −3.69 18.1 1
9.843 −11.832 2.82 6.28 62.9 2.98 0.69 4819 11.69 10.60 9.88 9.26 4.90 1.00 −4.85 17.2 0
10.467 −40.605 1.71 15.14 1.3 2.83 0.26 3359 14.51 12.18 10.87 10.11 2.70 1.02 −3.49 9.1 1
10.551 −27.297 3.60 5.99 283.9 2.96 1.04 5970 9.85 9.21 8.76 8.44 5.25 1.00 −4.52 22.5 0
11.067 −52.752 2.40 17.18 0.9 4.35 0.22 3287 15.54 13.10 11.74 10.98 3.10 1.00 −4.32 17.8 1
11.145 29.347 2.43 8.66 13.3 2.80 0.53 3948 12.80 11.09 10.08 9.27 3.95 1.01 −4.46 13.8 2
11.145 −49.044 1.51 8.12 6.4 2.27 0.39 3557 13.67 11.56 10.37 9.58 3.25 1.03 −4.45 10.7 1
11.207 37.355 2.64 1.98 28.9 7.02 0.32 3437 14.67 12.43 11.18 10.40 3.55 1.02 −4.01 22.6 3
11.547 −44.670 5.26 39.43 56.6 1.90 1.47 6577 8.65 8.16 7.82 7.62 5.30 1.00 −4.01 14.5 0
11.909 −67.746 3.67 4.78 216.5 3.69 0.84 5598 11.69 10.94 10.40 10.00 6.25 1.01 −3.77 20.4 0
12.015 74.529 3.85 1.85 11.8 17.24 0.17 3225 16.89 14.36 12.95 12.18 3.75 1.10 −3.49 45.8 3
12.085 −51.662 11.96 40.02 16.1 4.97 0.99 5598 10.31 9.55 9.02 8.63 5.25 1.01 −4.74 169.9 0
12.261 −60.310 2.12 10.35 3.4 3.19 0.33 3467 13.88 11.68 10.44 9.67 2.90 1.00 −3.53 13.3 2
12.320 75.640 6.92 5.25 513.2 5.25 1.20 6295 10.12 9.57 9.18 8.91 6.10 1.54 −4.12 64.3 1
12.410 −10.212 2.97 6.84 2.2 8.51 0.18 3230 16.63 14.10 12.70 11.93 3.60 1.00 −4.39 9.0 0
12.640 −53.861 1.73 2.40 20.9 4.48 0.31 3442 14.14 11.91 10.66 9.89 2.95 1.00 −3.95 17.7 3
12.928 −13.886 12.98 6.03 8419.9 5.13 2.50 10593 6.03 6.14 6.15 6.21 5.55 1.00 −4.16 61.4 1
12.974 58.302 2.77 13.71 422.9 1.35 1.56 7603 9.02 8.77 8.57 8.48 6.45 1.06 −4.50 7.9 1
13.048 74.712 1.47 1.06 81.4 5.18 0.36 3490 15.02 12.84 11.60 10.82 4.25 1.30 −3.61 7.9 2
13.408 27.048 3.21 11.65 84.2 2.21 0.96 5689 10.53 9.81 9.30 8.93 5.50 1.01 −4.84 13.2 1
13.494 −57.211 1.98 19.54 2.3 2.08 0.42 3606 14.03 11.97 10.80 10.01 3.90 1.00 −4.53 8.0 3
13.690 −81.593 1.85 2.20 15.3 6.25 0.24 3324 14.95 12.57 11.24 10.48 2.85 1.15 −3.84 29.3 3
13.824 −20.209 1.05 15.96 0.6 1.16 0.16 3228 14.83 12.30 10.91 10.15 1.60 1.00 −3.96 8.3 1
14.214 79.814 1.06 0.50 659.2 1.50 0.55 3996 12.87 11.21 10.21 9.40 4.20 1.05 −4.10 7.9 3
14.313 32.413 2.29 5.80 7.6 4.23 0.34 3470 12.33 10.15 8.92 8.15 1.40 1.00 −4.54 46.1 2
14.807 −14.485 1.99 12.55 0.6 5.39 0.16 3027 14.98 12.76 11.10 10.32 1.45 1.00 −3.53 19.7 1
15.256 48.530 2.27 7.68 4.4 3.93 0.31 3435 14.47 12.23 10.98 10.21 3.25 1.21 −3.70 15.1 2
15.926 75.902 1.94 5.06 333.5 1.72 1.05 5888 8.68 8.02 7.56 7.23 4.05 1.00 −4.64 16.7 2

Note.This catalog is based on one realization of the Monte Carlo simulation. The detections are drawn from the 2 105´ target stars that are observed with a 2-minute cadence. The larger sample of detections from stars
that are only observed in full-frame images is not provided here. The dilution parameter “Dil.” is defined in Equations (9) and (10).

(This table is available in its entirety in machine-readable form.)
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feasible for the planets with the brightest possible host stars.
For that reason, we show in Figure 33 the cumulative
distribution of apparent Ks magnitudes of stars hosting planets
with S S0.2 2< <Å . With the statistical errors in the planet
occurrence rates and Poisson fluctuations in the number of
detected planets, between 2 and 7 planets with S S0.2 2< <Å
and SR R2< Å have host stars brighter than K 9s = .

Of particular interest for atmospheric spectroscopy with
JWST are the planets that are located near the continuous-
viewing zones of JWST, which will be centered on the ecliptic
poles. A subset of 18 ± 5 planets with R R2p < Å and

S S0.2 2< <Å are found within 15° of the ecliptic poles. The
brightest stars hosting these planets have Ks » 9.

10. SUMMARY

We have simulated the population of transiting planets and
EBs across the sky, and we have identified the subset of those
systems that will be detectable by the TESS mission. To do so,
we employed the TRILEGAL model of the galaxy to generate a
catalog of stars covering 95% of the sky. We adjusted the
modeled properties of those stars to align them with more
recent observations and models of low-mass stars, the stellar
MF as a function of mass, and the J-band LF of the galactic
disk. We then added planets to these stars using occurrence
rates derived from Kepler. Then we modeled the process
through which TESS will observe those stars and estimated the
S/N of the eclipse and transit events.
We report the statistical uncertainties in our tallies of

detected planets arising from Poisson fluctuations and uncer-
tainties in the planet occurrence rates. However, systematic
errors in the occurrence rates, the LF, and stellar properties are

Figure 31. Mass measurement of the TESS planets. The radial velocity semi-amplitude K plotted against apparent magnitude for the TESS planets with R R3p < Å.
The sample is split at the median period of 7 days, and open symbols indicate planets near the habitable zone with an insolation S S2< Å. We assume the mass–radius
relation from Weiss et al. (2013). Several well-known exoplanets are also shown for context with × symbols: HD 97658b (Dragomir et al. 2013), CoRoT-7b (Hatzes
et al. 2011), GJ 1214b (Charbonneau et al. 2009), Kepler-20b and Kepler-48c (Marcy et al. 2014), and Kepler-10b (Dumusque et al. 2014), which is plotted in blue
for clarity.

Figure 32. Feasibility of transit spectroscopy of the TESS planets. The transit
depth of one atmospheric scale height, assuming a pure H2 atmosphere, is
plotted against the apparent stellar Ks magnitude. Atmospheric transit depths
are lower by a factor of 2m for other mean molecular weights. The points are
colored by stellar Teff , and open symbols indicate planets with an insolation
S S2< Å. The dashed lines indicate the relative photon-counting noise versus
magnitude, spaced by decades. Planets with R R3p < Å are shown in addition
to GJ1214b (Charbonneau et al. 2009), 55 Cancri e (Winn et al. 2011b), and
HD97658b (Van Grootel et al. 2014).

Figure 33. Cumulative distribution of apparent Ks magnitudes of the TESS-
detected planets with S S0.2 2< <Å .
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also significant. We also assumed that we can perfectly identify
the 2 105´ best “target stars” for TESS to observe at the 2-
minute cadence. In reality, it is difficult to select these stars
since subgiants can masquerade as main-sequence dwarfs.
Parallaxes from Gaia could help determine the radii of TESS
target stars more accurately, and examining the full-frame
images will help find planets transiting the stars excluded from
the 2-minute data.

The TESS planets will be attractive targets for follow-up
measurements of transit properties, radial velocity measure-
ments, and atmospheric transmission. Knowing the population
of planets that TESS will detect allows the estimation of the
follow-up resources that are needed, and it informs the design
of future instruments that will observe the TESS planets. The
simulations provide fine-grained statistical samples of planets
and their properties which may be of interest to those who are
planning follow-up observations or building instruments to
enable such observations. Table 6 presents the results from one
trial of the TESS mission. This catalog contains all the detected
transiting planets from among the 2 105´ target stars that are
observed at a 2-minute cadence.

We look forward to the occasion, perhaps within 5–6 years,
when TESS will have completed its primary mission and we are
able to replace this simulated catalog with the real TESS
catalog. This collection of transiting exoplanets will represent
the brightest and most favorable systems for further study.
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