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Gravitational wave coalescence events provide an entirely new way to determine the Hub-

ble constant 1–3, with the absolute distance calibration provided by the theory of general

relativity. This standard siren method was utilized to measure the Hubble constant using

LIGO-Virgo’s detection of the binary neutron-star merger GW170817, as well as optical

identifications of the host galaxy, NGC 4993 4. The novel and independent measurement is

of particular interest given the existing tension between the value of the Hubble constant de-

termined using Type Ia supernovae via the local distance ladder (73.24± 1.74) and that from

Cosmic Microwave Background observations (66.93± 0.62) by ∼ 3 sigma 5, 6. Local distance

ladder observations may achieve a precision of 1% within 5 years, but at present there are no

indications that further observations will substantially reduce the existing discrepancies 7. In
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addition to clarifying the discrepancy between existing low and high-redshift measurements,

a precision measurement of the Hubble constant is of crucial value in elucidating the nature

of the dark energy 8, 9. Here we show that LIGO and Virgo can be expected to constrain the

Hubble constant to a precision of ∼ 2% within 5 years and ∼ 1% within a decade.

We explore the expected constraints on the Hubble constant (H0) from gravitational-wave

standard sirens. The gravitational-wave data provides a direct measurement of the luminosity dis-

tance to the source, but the redshift must be determined independently. We consider gravitational-

wave events both with (“counterpart”) and without (“statistical”) direct electromagnetic measure-

ments of the source redshift, and carry out an end-to-end simulation of theH0 measurement from a

simulated data set consisting of 30,000 binary neutron star (BNS) mergers and 60,000 binary black

hole (BBH) mergers. We include realistic measurement uncertainties, galaxy peculiar velocities,

and selection effects in our analysis.

We anticipate that most, if not all, binary neutron star mergers detected in gravitational

waves will have an electromagnetic counterpart (e.g. from associated isotropic 10, 11 kilonova emis-

sion 12, 13) that will allow for a unique host galaxy identification 4. Assuming the BNS population

is similar to the population of short gamma ray bursts, we expect the typical offset between a

kilonova and its associated host galaxy to be no more than 100 kpc 14. Since Advanced LIGO-

Virgo BNS detections will be within 400 Mpc, it will be possible to identify host galaxies down

to 0.003 L?B (apparent magnitudes < 23) with modest observational resources. We find that in

this counterpart case, the fractional H0 uncertainty will scale roughly as 15%/
√
N , where N is
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the number of BNS mergers detected by the LIGO-Hanford, LIGO-Livingston, and Virgo network

(HLV). Throughout, we quote fractional H0 measurement uncertainties defined as half the width

of the symmetric 68% credible interval divided by the median. If KAGRA and LIGO-India join

the detector network (HLVJI), this convergence improves slightly to 13%/
√
N , as a five-detector

network tends to provide better measurements of the source inclination, and therefore distance,

due to the improved polarization information.

We note that the representative σh0 (15% for the three-detector network, and 13% for the

five-detector network), is smaller than the typical width of the H0 measurement from an individual

event (GW170817 provided an unusually tight measurement; see Extended Data). This is due to the

fact that for a single event, the H0 posterior probability density function is a highly non-Gaussian

function; the distance-inclination degeneracy leads to long tails to large distances (and low H0

values) for edge-on sources, and tails in the opposite direction for face-on sources. Combining

these asymmetric distributions leads to a 1/
√
N convergence with a smaller effective σh0 than the

width of a typical single-event H0 measurement 15, 16. Furthermore, due to the asymmetry of the

single-event measurements, it may take∼ 20 events to reach the expected 1/
√
N convergence rate.

For example, we may get lucky in the first few events and get an unusually good H0 measurement

(GW170817 is an excellent example of this), after which we will converge more slowly than 1/
√
N

for some time as we detect average events. After ∼ 20 events, however, we have a sufficient

statistical sample of detections to have converged to a representative σh0 for the population. At

this point, the combined H0 measurement approaches a Gaussian distribution and we reach the

expected 1/
√
N behavior.
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Figure 1: Projected number of binary neutron-star detections and corresponding fractional

error for the standard siren H0 measurement Top panel: The expected total number of BNS

detections for future observing runs, using the median merger rate (solid green curve), and upper/

lower rate bounds (shaded band). Bottom panel: The corresponding H0 measurement error, de-

fined as half of the width of the 68% symmetric credible interval divided by the posterior median.

The band corresponds to the uncertainty in the merger rate shown in the top panel. These mea-

surements assume an optical counterpart, and associated redshift, for all BNS systems detected in

gravitational-waves.
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Figure 2: Projected fractional error for the standard siren H0 measurement for binary

neutron stars and binary black holes for future gravitational-wave detector networks. The

green shaded band (identical to the band in Figure 1) corresponds to the BNS rate uncertainty; the

same rate uncertainty applies to the ‘BNS without counterpart’ curve. For the ‘without counterpart’

curves, we adopt a statistical standard siren approach using only events localized to within 10,000

Mpc3 (90% credible region); events with larger volumes do not contribute noticeably (see the text

for more details).
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In order to predict how the H0 measurement improves with time, we consider the BNS rates

inferred from GW17081717, 1540+3200
−1220 Gpc−3yr−1, together with the planned network sensitivity

and duty cycle, to compute the expected number of detections at each observing stage. Figure 1

shows the improvement in the H0 measurement as BNS detections with unique host galaxies are

accumulated. We start with a 15% prior measurement on H0, representing the constraint from

GW170817 4; we approximate this by a Gaussian centered at 67.8 km/s/Mpc with a standard de-

viation of 10.2 km/s/Mpc, but the exact center and shape of the H0 posterior do not affect our

results. The rate of detections will increase as the gravitational-wave network improves in sensi-

tivity between LIGO-Virgos third observing run (‘O3 HLV’), HLV at design sensitivity (‘Design

HLV’), and the five-detector network (‘Design HLVJI’), from an average of 5 BNS detections per

year in O3, to 32 and 39 detections per year for Design HLV and Design HLVJI. The merger rate

provides the major source of uncertainty in predicting the H0 measurement error. The solid line

in the bottom panel of Figure 1 shows the average H0 measurement error over 100 realizations

assuming the median BNS merger rate, while the lower/ upper bounds of the shaded band assume

the upper/ lower 90% bounds on the merger rate inferred from GW170817.

We find that, if it is possible to independently measure a unique redshift for all BNS events,

the fractional uncertainty on H0 will reach 2% (at the 1σ level) by the end of 2 years of HLV

at design sensitivity (∼ 2023; corresponding to O(50) events), sufficient to arbitrate the current

tension between local and high-z measurements of H0. After O(100) BNS events, GW standard

sirens would provide a 1% determination of H0. This is expected to happen after ∼ 2 years of

operation of the full HLVJI network (∼ 2026), but given the rate uncertainties could happen many
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years later, or could happen as early as 2023.

Not all sources will have associated transient electromagnetic counterparts: we may fail to

identify the counterparts to some binary neutron star mergers, and counterparts are not expected

for binary black hole mergers. In the case where a unique counterpart cannot be identified, it is

possible to carry out a measurement of the Hubble constant using the statistical approach. In this

case, the redshifts of all potential host galaxies within the gravitational-wave three-dimensional

localization region are incorporated, yielding an H0 measurement that is inferior to the counterpart

case, but still informative once many detections are combined. This means that, in the absence of

a counterpart, only those gravitational-wave events with small enough localization volumes yield

informative H0 measurements. If the localization volume is too large, it contains a large number

of potential host galaxies, significantly washing out the contribution from the correct host galaxy.

Additionally, it may be difficult in practice to construct a complete galaxy catalog over a large

volume with precise galaxy redshifts. We find that for BNSs without counterparts, combining the

H0 measurement from events that are localized to within 10,000 Mpc3 (∼40% of events) yields

identical constraints to the combined measurement utilizing the full sample – events localized to

greater than 10,000 Mpc3 do not contribute to the measurement. For this reason, we use only

the sources localized to within 10,000 Mpc3 for the no-counterpart projections in Figure 2. Note

that for all of the no-counterpart curves in Figure 2, we start with a flat H0 prior between 50–100

km/s/Mpc.

Because BBH systems tend to have much larger localization volumes than BNS systems (as
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they are more massive and found at greater distances), the statistical H0 measurement for BBHs

converges very slowly, even though they are detected at higher rates. We consider both “light”

(10–10M�) and “heavy” (30–30M�) BBHs, assuming merger rates of 80+90
−70 Gpc−3yr−1 for 10–

10M�BBHs and 11+13
−10 Gpc−3yr−1 for 30–30M�BBHs 18 (see the Methods section for details).

Only ∼3% of the light BBHs and ∼0.5% of the heavy BBHs are localized to within 10,000 Mpc3,

meaning we only expect to detect 16+19
−14 well-localized BBHs by 2026. This leads to a ∼10%

H0 measurement with BBHs by 2026. We note that the constraints from statistical BBH standard

sirens improve if the BBH rates are on the high end, as well as if the BBH mass function favors

low masses.

For the projections in Figure 2, we assumed that galaxies are distributed uniformly in comov-

ing volume and that complete catalogs are available. If we incorporate the clustering of galaxies

due to large-scale structure, the convergence rate in the statistical case improves by a factor of∼2.5

(see Methods). Incorporating this large-scale structure effect, we find that it will still take more

than ∼ 50 binary neutron stars without a counterpart to reach a 6% H0 measurement, compared

to only < 10 binary neutron stars with a counterpart. Meanwhile, accounting for galaxy catalog

incompleteness provides an additional source of uncertainty (see Eq. 5 in the Methods), which can

cancel out some of the improvement due to large-scale structure. For example, for a galaxy catalog

completeness of 50%, theH0 measurement would be degraded by a factor . 2 19. Therefore, incor-

porating the effects of large-scale structure and catalog incompleteness, we expect that in practice

the H0 constraints in the statistical case will be slightly better than our prediction in Figure 2,

where the precise factor depends on properties of the relevant host galaxies and completeness of
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the catalog.

While we have considered the counterpart and no-counterpart cases, we can also anticipate

a situation in which we have a counterpart detection but no unambiguous host association. For

example, an optical counterpart could be relatively isolated on the sky without a clearly identified

host galaxy, or may have multiple possible host galaxies. In this case we can pursue a pencil-beam

strategy focusing on the volume within∼ 100 kpc of the counterpart (see Methods). For BNSs, this

will reduce the relevant volume to O(10) Mpc3, for which we expect to have only ∼ 1 potential

host galaxy or galaxy group, thereby reducing to the counterpart case.

In addition to BNSs and BBHs discussed here, neutron star-black hole mergers are to be

expected 20–22, and are likely to have detectable electromagnetic counterparts. Although the rates

for these systems are uncertain and expected to be low, they will also be seen to greater distances

than BNS systems, which may render them useful as standard sirens 23.

It is to be noted that our measurements of distance do not use any astrophysical model-

ing. Alternatively, associated electromagnetic observations (for example from short gamma-ray

burst afterglows or jet breaks) can provide additional constraints on the inclination, and thereby

improve the individual measurements of H0
4, 24. In this sense our counterpart results can be con-

sidered a conservative estimate. However, one of the advantages of standard sirens is that they

are “pure” measurements of luminosity distance, avoiding complicated astrophysical distance lad-

ders or poorly understood calibration processes, and instead are calibrated directly by the theory

of general relativity to cosmological distances. By introducing additional constraints based on
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astronomical observations (e.g., independent beaming measurements or estimates of the mass dis-

tribution or equation-of-state of neutron stars), there is the potential to introduce systematic biases

that could fundamentally contaminate the standard siren measurements. In the present analysis we

do not consider these additional constraints, although they may indeed have an important role to

play in future standard siren science.

Eventually systematic errors in the amplitude calibration of the detectors may become a

source of concern, as the luminosity distance is encoded in the amplitude of the gravitational-

wave signal. However, the calibration uncertainty is currently limited by the photon calibrator to

∼ 1%, and this is likely to improve 25; we look forward to an era where sub-percent calibration

becomes a necessity, but this is a number of years away. Another possible source of distance

uncertainty is gravitational lensing. However, at the typical redshift of BNS and BBH (z < 0.5 at

design sensitivity) the effect will be minor relative to the uncertainty from the distance-inclination

degeneracy 26. In addition, for sufficient numbers of sources the effects of lensing will average

away 15. Of course, gravitational-wave cosmology is a new field, and unforeseen systematics

could certainly arise as we push our measurements to the percent level and beyond.

We stress that our projected H0 constraints are subject to several important uncertainties,

the largest one of which is the merger rate of BNS and BBH systems. The detection rates for

BBHs depends sensitively on the mass distribution, which is not currently well-constrained 27, 28.

Future detections will bring a better understanding of the merger rates and mass distributions of

compact objects, allowing for improved predictions. Regardless, it is clear that gravitational-wave
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standard sirens will provide percent-level constraints on H0 in the upcoming advanced detector era

of gravitational-wave astronomy.
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1 Methods

In what follows we present our method for inferring cosmological parameters from gravitational-

wave (GW) and electromagnetic-wave (EM) measurements. We first Monte Carlo a representative

sample of GW detections for a range of detector configurations. We then simulate the analysis of

these data sets, and explore the resulting standard siren constraints. We highlight important aspects

of our calculation, such as the role of peculiar velocities and selection effects.

Synthetic Events and Host Galaxies MeasuringH0 with standard sirens relies on our ability

to extract the luminosity distance and sky position of GW sources. We follow the procedure in

29 to localize synthetic binary neutron star merger (BNS) and binary black hole merger (BBH)
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detections. The population of binaries are distributed uniformly in comoving volume in a Planck 6

cosmology (ΩM0 = 0.308,ΩΛ0 = 0.692, h0 = 0.678). We assume the BNS merger rate follows

the rate measured in 17. To estimate the merger rate of 10–10M�and 30–30M�BBHs from the

rate measured in 18, we assume the BBH mass function follows a Salpeter power law and use 10–

10M� BBHs to characterize all BBHs with primary component masses between 5 and 15M�,

and 30–30M� BBHs to characterize all BBHs with primary component masses between 20 and

50M�. We do not place additional cuts on the secondary masses, which are distributed uniformly

between 5M� and the primary mass.

The detection-rate of sources depends on the sensitivity, observing time, and duty-cycle of

the GW detector network. We assume that the LIGO-Virgo network operates for one year at

projected O3 sensitivity, followed by two one-year-long observing runs of LIGO-Hanford+ LIGO-

Livingston+Virgo (HLV) at design sensitivity and two one-year-long runs of the five-detector net-

work, LIGO-Hanford+ LIGO-Livingston+Virgo+KAGRA+LIGO-India (HLVJI), at design sensi-

tivity 30. We take the combined duty cycle to be 0.5 for the HLV detector configuration and 0.3

for HLVJI. The number of detections is subject to Poisson statistics, and we simulate detections

according to the merger rate, network sensitivity, observing time, and duty cycle.

To determine whether a binary merger is detected, we calculate the matched-filter signal-to-

noise ratio (SNR) for each simulated binary. We draw the “measured” SNR from a Gaussian dis-

tribution centered at the matched-filter value with a standard deviation σ = 1. Binary mergers are

detected only if their measured network SNR is greater than 12. For each detected merger, we cal-
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culate its 3D localization according to the methods in 29 (We have verified that this procedure yields

results which are consistent with the full parameter estimation pipeline, LALInference 31.) The 3D

localization takes the form of a posterior probability distribution function, p(α, δ,DL|dGW), over

the sky position (α, δ) and luminosity distance, DL, given the GW data , dGW.

The gravitational wave signal from each detected binary merger provides a measurement of

DL. To calculate H0, we must also measure a redshift for each binary merger. Throughout, we

take the redshift, z, to be the peculiar-velocity corrected redshift; that is, the redshift that the source

would have if it were in the Hubble flow. We consider two cases: the redshift information either

comes from a direct EM counterpart, such as a short gamma-ray burst/afterglow and/or a kilonova

(“counterpart”), or a statistical analysis over a catalog of potential host galaxies (“statistical”).

In the counterpart case, we assume that the EM counterpart is close enough to its host galaxy

so that the host can be unambiguously identified, and we can measure its sky position and red-

shift. This is a reasonable assumption based on the distribution of offsets between short gamma

ray bursts and their host galaxies, assuming short gamma ray bursts trace a similar population as

BNS mergers, and taking into account that detected BNS mergers will be at much lower redshifts

than the short GRB population. We assume that the sky position of each host galaxy is perfectly

measured (i.e. with negligible measurement error), meaning we can fix the source sky position

to the location of the counterpart in the GW parameter estimation (rather than marginalizing over

all sky positions). The GW distance posterior changes slowly over the sky and therefore is not

sensitive to the precise location of the counterpart. However, since the GW sky localization areas
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can be very large, fixing the source position can lead to important improvements in the distance,

and hence H0, measurements. We also assume that the peculiar-velocity corrected redshift, z, is

measured with a 1-σ error of (200 km/s)/c, which is a typical uncertainty for the peculiar velocity

correction 32, 33.

In the absence of an EM counterpart, we cannot identify a single host galaxy, and must

use a catalog of all potential host galaxies 1, 34. To simulate the galaxy catalogs, we consider two

cases: a uniform-in-comoving-volume distribution of galaxies, and a distribution that follows the

large-scale structure as simulated by the MICE galaxy catalog 35–38. In the uniform distribution

case, we construct a mock catalog by distributing galaxies uniformly in comoving volume with

a number density of 0.02 Mpc−3. This corresponds to the number density of galaxies 25% as

bright as the Milky Way, assuming the galaxy luminosity function is described by the Schechter

function 39 with B-band parameters φ∗ = 1.6×10−2h3 Mpc−3, α=-1.07, L∗ = 1.2×1010h−2LB,�,

and h = 0.7 (where LB,� is the solar luminosity in B-band), and integrating down to 0.16L∗ to

find the luminosity density. (This corresponds to 83% of the total luminosity 40–42.) The lower

luminosity limit of the MICE catalog is similar. Thus, we assume that only galaxies brighter than

0.16L∗ can host binary mergers, although we note that the population of host galaxies is currently

uncertain, and we can modify the assumed luminosity limit by including the effects of catalog

incompleteness. A lower luminosity limit would increase the galaxy density and weaken the H0

constraints in the statistical case.

H0 uncertainty Not all GW events contribute equally to the H0 measurements. In the counterpart
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case, the fractional error on the H0 measurement from a single source depends on the fractional

distance uncertainty of the GW source and the fractional redshift uncertainty of its host galaxy. To

first order, this is: (
σH0

H0

)2
∣∣∣∣∣
1gal

≈
(
σvH
vH

)2

+

(
σDL

DL

)2

, (1)

where vH is the peculiar-velocity corrected “Hubble velocity”. Because the recessional velocity

uncertainty, σvH , is typically around 150–250 km/s, the fractional recessional velocity decreases

with distance. Meanwhile, the fractional distance uncertainty scales roughly inversely with SNR,

and therefore tends to increase with distance. There is thus a “sweet spot”, where the peculiar

velocities and the distance uncertainties are comparable; for LIGO-Virgo’s second observing run,

this was ∼ 30 Mpc, near the distance of GW170817. The sweet spot will increase as the networks

become more sensitive; for detectors at design sensitivity the ideal BNS standard siren distance will

be ∼ 50 Mpc. At distances beyond this, the distance uncertainty will tend to dominate the peculiar

velocity uncertainty; in this regime, the nearest (highest SNR) events tend to provide the tightest

H0 constraints. This can be seen in the figure in Extended Data, which shows the fractional H0

uncertainty for individual events, plotted against the median posterior distance and 90% posterior

localization volumes. However, we note that the relationship between median distance, localization

volumes, and fractional H0 uncertainty is not very tight. Prior to identifying the counterpart for a

particular event, we can estimate the accuracy of the H0 measurement from the width and central

value (e.g. median) of the GW distance posterior according to Eq. 1, using an estimated vH ≈

70 〈DL〉 km/s/Mpc, where 〈DL〉 is the median GW distance. (Here we must use the GW posterior

marginalized over the sky position, as we do not yet know the sky position of the counterpart.) We
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verify that this estimate of the combined distance and redshift uncertainty is a reasonable proxy for

the resulting H0 uncertainty, assuming an EM counterpart is found and provides an independent

measurement of redshift.

In the absence of a counterpart, we cannot assign a unique host, and so theH0 error increases

with the number of potential host galaxies in the localization volume. Significant galaxy clustering

can mitigate this, as we discuss in the main text. For example, in the case of GW170817, the optical

counterpart was found in NGC 4993, which is a member of a group of ∼ 20 galaxies, all of which

have an equivalent Hubble recessional velocity 43. On the other hand, catalog incompleteness

degrades the H0 measurement, as we have to consider an additional background of uniformly

distributed galaxies (see Equation 5).

Bayesian Model For a single event with GW and EM data, dGW and dEM, we can write the likeli-

hood as:

p(dGW, dEM|H0) =

∫
p(dGW, dEM, DL, α, δ, z|H0)dDLdαdδdz

β(H0)
, (2)

where we have included a normalization term in the denominator, β(H0), to ensure that the likeli-

hood integrates to unity. We can factor the numerator in Eq. 2 as:

∫
p(dGW, dEM, DL, α, δ, z|H0) dDLdαdδdz

=

∫
p(dGW|DL, α, δ)p(dEM|z, α, δ)p(DL|z,H0)p0(z, α, δ | H0)dDLdαdδdz

=

∫
p(dGW|DL, α, δ)p(dEM|z, α, δ)δ(DL − D̂L(z,H0))p0(z, α, δ | H0)dDLdαdδdz

=

∫
p(dGW|D̂L(z,H0), α, δ)p(dEM|z, α, δ)p0(z, α, δ | H0)dαdδdz, (3)
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where D̂L(z,H0) denotes the luminosity distance of a source at redshift z, given a Hubble con-

stant of H0 and leaving all other cosmological parameters fixed to the Planck values (ΩM0 =

0.308,ΩΛ0 = 0.692) 6. We can alternatively marginalize over these other cosmological param-

eters, but since most detected binaries will be at low redshifts, the effects of other cosmological

parameters on the z–DL relation are small. The term p(dGW|DL, α, δ) is the marginalized likeli-

hood of the gravitational wave data given a compact binary source at distance DL and sky position

(α, δ), marginalized over all other parameters. Throughout, we assume that we can construct a

catalog of the potential host galaxies for each event, and take the prior p0(z, α, δ | H0) to be a sum

of Gaussian distributions centered at the measured redshifts and sky positions of the galaxies:

p0(z, α, δ | H0) = pcatalog(z, α, δ)

=
1

Ngal

Ngal∑
i

N [z̄i, σiz](z)N [ᾱi, σiα](α)N [δ̄i, σiδ](δ). (4)

In practice, we ignore the uncertainties on the measured sky coordinates and treat the Gaussian

distributions as δ-functions centered at the measured ᾱi, δ̄i. We take z̄i to be the peculiar velocity-

corrected redshifts, and assume a standard deviation of cσiz = 200 km/s for each. In the above, we

assign equal weights to each galaxy in the catalog, but if we believe that certain galaxies are a priori

more likely to be GW hosts, we can assign weights accordingly. For example, we can weigh the

galaxies in Eq. 4 by their stellar or star-forming luminosity, or by some assumed redshift-dependent

coalescence rate of the GW sources. A critical assumption is that the sum in Eq. 4 contains the

correct host galaxy. If we believe the catalog is incomplete, we must replace our prior, p0(z), with a

weighted sum containing both the observed galaxies, Eq. 4—weighted by the overall completeness

fraction of the catalog—and a smooth, uniform-in-comoving volume distribution accounting for
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the unobserved galaxies:

p0(z, α, δ | H0) = fpcatalog(z, α, δ) + (1− f)pmiss(z, α, δ | H0), (5)

where pcatalog is given by Eq. 4, and:

pmiss(z, α, δ | H0) ∝ [1− pcomplete(z, α, δ)]
dVc

dzdαdδ
, (6)

where pcomplete(z, α, δ) is the probability of a galaxy at (z, α, δ) being in the catalog. Meanwhile

the completeness fraction f is given by:

f =
1

Vc(zmax)

∫
α

∫
δ

∫ zmax

0

pcomplete(z, α, δ)
dVc

dzdαdδ
dzdαdδ, (7)

where zmax is the maximum galaxy redshift considered in the analysis of an individual event, and

Vc(zmax) is the total comoving volume enclosed within zmax.

In the case where we have an electromagnetic counterpart, the likelihood p(dEM|z, α, δ) picks

out one of the galaxies in the catalog, so that the sum in the prior reduces to a single term corre-

sponding to the EM-identified host galaxy. In the case where there is no electromagnetic counter-

part, the EM data is uninformative, and we set the likelihood p(dEM|z, α, δ) ∝ constant. In the case

where we have an electromagnetic counterpart but cannot pick out a unique host galaxy, one could

consider a “pencil beam” containing all the potential host galaxies within ∼ 100 kpc in projected

distance on the sky. We assume the sky position of the counterpart is perfectly measured to be

(ᾱ, δ̄), and take the term p(dEM | z, α, δ) to be a top hat which picks out all of the galaxies within

some angular radius, r, (corresponding to ∼ 100 kpc in projected distance) of the counterpart’s
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sky position. Thus, the numerator of Eq. 3 reduces to:∫
〈(α,δ)|(ᾱ,δ̄)〉<r

p(dGW|D̂L(z,H0), ᾱ, δ̄)p0(z, α, δ)dzdαdδ, (8)

and we sum over all galaxies within ∼ 100 kpc in projected distance, but no longer weigh them

by the likelihood of the GW source at the corresponding sky position. Alternatively, we can in-

corporate assumptions about the kick distribution in the form of p(dEM | z, α, δ) and place more

weight at galaxies close to (ᾱ, δ̄) rather than assuming a simple top hat. Although for simplicity we

don’t apply the pencil-beam approach in this letter, it can be thought of as a natural interpolation

between the counterpart and statistical cases.

To calculate the normalization term, β(H0), in the denominator of Eq. 2, we must account

for selection effects in our measurement process. In general, the GW and EM data are both subject

to selection effects in that we only detect GW and EM sources that are above some threshold, dth
GW

and dth
EM, respectively. Accounting for these detection thresholds, the denominator of Eq. 2 is:

β(H0) =

∫
dEM>d

th
EM

∫
dGW>dthGW

∫ 4

p(dGW, dEM, DL, α, δ, z|H0)dDLdzdαdδddGWddEM (9)

We define:

pGW
det (DL, α, δ) ≡

∫
dGW>dthGW

p(dGW|DL, α, δ)ddGW, (10)

and similarly:

pEM
det (z, α, δ) ≡

∫
dEM>d

th
EM

p(dEM|z, α, δ)ddEM. (11)

With these definitions, Eq. 9 becomes:

β(H0) =

∫
pGW

det (D̂L(z,H0), α, δ)pEM
det (z, α, δ)p0(z, α, δ)dαdδdz.
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Note that we have applied the same chain-rule factorization to the inner four integrals as in Eq. 3.

It is clear that the normalization factor β(H0) depends on H0, so it is crucial to include it in the

likelihood. For the EM selection effects, we assume that we can detect all EM counterparts and

host galaxies up to some maximum true redshift, zmax. This is an over-simplification of the true

EM selection effects, but is a reasonable assumption for the real-time galaxy catalogs that will

be constructed during the EM follow-up to GW events. For example, at Advanced LIGO design

sensitivity, 90% of 30–30 M� BBH detections will be within 5 Gpc (and BNS detections will be

within 0.3 Gpc) 441. Furthermore, only the BBHs with the smallest localization volumes contribute

to the H0 constraints, and these will typically be within 400 Mpc. A galaxy with the same absolute

magnitude as the Milky Way would have an apparent magnitude of< 23 at typical 30–30M� BBH

distances, or < 17.5 for well-localized BBHs, and < 17 at typical BNS distances. Meanwhile, we

expect kilonova counterparts to BNS mergers to have magnitudes of≤ 21.7 on the first night, even

at the farthest distances detectable by the HLVJI network at design sensitivity (assuming the optical

counterpart to GW170817 is typical 13, 45). This is well within the magnitude limits of upcoming

survey telescopes (e.g. LSST), as well as within reach of current instruments (e.g. DECam, Subaru

Hyper Suprime-Cam, ZTF etc.).

We assume that EM counterparts are detectable for binaries regardless of the binary incli-

nation. Although the short gamma-ray burst emission is expected to be beamed, the associated

kilonovae are expected to emit isotropically. Furthermore, as GW170817 demonstrated, it is pos-

sible to identify a kilonova counterpart independently of the gamma-ray burst. We note that since

1http://gwc.rcc.uchicago.edu/
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face-on/face-off binaries are louder (have higher SNR) than edge-on binaries in GWs, the popula-

tion of detected binaries will show a preference for face-on/face-off; our analysis reproduces the

expected inclination distribution among detected sources (see Fig. 4 of 46). Under these assump-

tions for the EM selection effects, we have:

pEM
det (z, α, δ) ∝ H(zmax − z), (12)

whereH is the Heaviside step function, and Eq. 9 reduces to:

β(H0) =

∫ zmax

0

∫ ∫
pGW

det (D̂L(z,H0), α, δ)p0(z, α, δ)dαdδdz.

Meanwhile, we assume that the galaxy distribution is approximately isotropic on large scales,

so that the galaxy catalog prior can be factored as:

p0(z, α, δ) ≈ p0(z)p0(α, δ), (13)

and we approximate p0(α, δ) by a continuous, isotropic distribution on the sky. We note that

this assumption would only introduce systematic errors if the galaxy distribution had significant

correlations with the sky sensitivities of the detectors, which is not to be expected. We then define:

pGW
det (DL) =

∫
pGW

det (DL, α, δ)p0(α, δ)dαdδ. (14)

We assume a detection threshold for GW sources corresponding to a matched-filter network SNR

ρth = 12, so that the detection probability, pGW
det (DL), is the probability that a source at distance

DL will have SNR ρ > 12. Assuming a distribution of orientations, masses and spins among a

population of sources, in addition to the assumed isotropic distribution on the sky, p0(α, δ), we
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calculate the fraction of sources that are detectable at a given distance, pGW
det (DL). We assume an

isotropic distribution of orientation angles, and fix spins to be zero. For simplicity, we assume a

monochromatic mass distribution for each type of source. (For example, we take all BNS sources

to be 1.4–1.4 M�.) We therefore have:

β(H0) =

∫ zmax

0

pGW
det (DL(z,H0)) p0(z)dz. (15)

We note that for GW sources in the local universe (DL < 50 Mpc),

D̂L(z,H0) ≈ cz

H0

. (16)

If we assume that the distribution of galaxies is uniform in comoving volume, then in the local

universe, we can approximate:

p0(z) ∝ z2. (17)

With these approximations, assuming that EM selection effects are negligible (zmax →∞), β(H0)

is independent of the masses of the source, which determine the distance to which it can be de-

tected. In fact, under these assumptions, β(H0) simplifies to:

β(H0) ∝ H3
0 . (18)

However, in general, we must account for cosmological deviations from Eqs. 16 and 17 so we

calculate β(H0) according to Eq. 15 throughout our analysis. We note that β(H0) is still only

weakly dependent on the GW horizon and therefore the (unknown) underlying mass distribution

of GW sources. Nevertheless, the statistical framework described here can accommodate more

complicated models of the GW source distribution and its effects on the detection probability

(Eq. 14).
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(Extended Data) H0 uncertainty σh0 for BNS systems with identified counterparts and red-

shifts Each point is the H0 uncertainty from a simulated detection with the Advanced LIGO-

Hanford+LIGO-Livingston+Virgo network operating at design sensitivity, as a function of the 90%

localization volume. The colors correspond to the median of the gravitational-wave distance mea-

surement. The lower∼ 3 km/s/Mpc limit to the precision of individual measurements is due to the

“sweet spot” between peculiar velocities and distance uncertainties, as discussed in the text. We

find that, in general, closer events have smaller localization volume and lead to better constraints

onH0, although the closest events yield slightly worse constraints because of their larger fractional

peculiar velocity uncertainties.
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