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ABSTRACT
All life on Earth needs water. NASA’s quest to follow the water links water to the search for life in the cosmos. Telescopes like
JWST and mission concepts like HabEx, LUVOIR and Origins are designed to characterise rocky exoplanets spectroscopically.
However, spectroscopy remains time-intensive and therefore, initial characterisation is critical to prioritisation of targets.
Here, we study machine learning as a tool to assess water’s existence through broadband-filter reflected photometric flux on
Earth-like exoplanets in three forms: seawater, water-clouds and snow; based on 53,130 spectra of cold, Earth-like planets with
6 major surfaces. XGBoost, a well-known machine learning algorithm, achieves over 90% balanced accuracy in detecting the
existence of snow or clouds for S/N& 20, and 70% for liquid seawater for S/N & 30. Finally, we perform mock Bayesian analysis
with Markov-chain Monte Carlo with five filters identified to derive exact surface compositions to test for retrieval feasibility.
The results show that the use of machine learning to identify water on the surface of exoplanets from broadband-filter
photometry provides a promising initial characterisation tool of water in different forms. Planned small and large telescope
missions could use this to aid their prioritisation of targets for time-intense follow-up observations.
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1 INTRODUCTION

Thousands of exoplanets have been detected to date; including terres-
trial planets. Dozens of these orbit in their host star’s habitable zone
(HZ) (e.g. Kane et al. 2016; Johns et al. 2018), where liquid water
could be available on their surface (Kasting et al. 1993). Missions,
such as the Transiting Exoplanet Survey Satellite (Ricker et al. 2014),
and ground-based searches continually expand our list of potentially
habitable planets (e.g. Nutzman & Charbonneau 2008; Luque et al.
2019; Kaltenegger et al. 2021). Upcoming telescopes, such as the
James Webb Space Telescope, will probe the atmosphere of Earth-
sized exoplanets in the HZ (e.g. Zhang et al. 2018; Krissansen-Totton
et al. 2018; de Wit et al. 2018; Wunderlich et al. 2019; Kaltenegger
et al. 2020; Edwards et al. 2021).
Planetary formation models suggest that water-rich planets are

common (Raymond et al. 2014), making planets with surface water
interesting targets for upcoming telescope observations (e.g. Wun-
derlich et al. 2019; Smith et al. 2020a). However, being in theHZ does
not imply habitability (Selsis et al. 2007; Kaltenegger 2017). Under-
standing the habitable characteristics of a planet requires a detailed
characterisation of the exoplanet through time intense spectroscopic
observations to analyze the planets’ atmosphere and surface com-
position. But spectroscopy of Earth-size planets in the HZ will be
time-intensive, even with future telescope concepts recommended by
the recent Decadal survey like HabEx or LUVOIR (e.g. Feng et al.
2018; The LUVOIR Team 2019; Gaudi et al. 2020). Thus, fast iden-
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tification and prioritisation of targets is a critical aspect to enable a
successful search. Several teams suggested photometry as a tool for
such initial characterisation, testing it on Solar System objects as well
as exoplanet models and explored optimal filters for such character-
isation (e.g. Crow et al. 2011; Hegde et al. 2015; Krissansen-Totton
et al. 2016; Madden & Kaltenegger 2018; Smith et al. 2020b).
Additionally, machine learning methods have shown potential for

fast initial characterisation of extrasolar planets with photometry: For
giant planets Batalha et al. (2018) explore how to characterise atmo-
spheric properties, such as metallicity and cloud coverage through
supervised machine learning for the 5 broadband filters of the Nancy
Grace Roman Space Telescope. For Earth-like planets, Pham &
Kaltenegger (2021) assess eight machine learning methods to char-
acterise surface biota through photometric fluxes for the standard
Johnson filters.
Broadband filter photometry could allow smaller telescopes like

the Nancy Grace Roman Telescope (Spergel et al. 2015), Ariel
(Tinetti et al. 2021) and Twinkle (Edwards et al. 2019) to help ini-
tially characterising nearby rocky exoplanets. It could also allow
large missions concepts like HabEx (Gaudi et al. 2020) and LU-
VOIR (The LUVOIR Team 2019) rapid initial characterisation of
exoplanets in the Habitable Zone to prioritise targets for time-intense
spectroscopic observations. This approach is complimentary to tran-
sit observations proposed for rocky exoplanet from JWST (Gardner
et al. 2006), which won’t be able to probe the surface of a rocky
exoplanet.
In this article, we explore the capability of machine learning to

detect water on the surface of a cool terrestrial planet in three forms:
liquid seawater, water-clouds and snow. Note that we did not choose

© 2022 The Authors

ar
X

iv
:2

20
3.

04
20

1v
1 

 [
as

tr
o-

ph
.E

P]
  8

 M
ar

 2
02

2



L2 Pham & Kaltenegger

Wavelength [µm]

0.2

0.4

0.6

0.8

1.0

A
lb

ed
o

Cloud

Snow

Sand

Seawater

Basalt

Aspen Leaf

0.5 1.0 1.5 2.0
Wavelength [µm]

0

1

F
ilt

er
re

sp
on

se

f1 f2 f3 f4 f5 f6 f7 f8 f9

0.2
µm

Figure 1. Top: Albedos of six reflecting components representative ofmodern
Earth, with Aspen leaf as representative for Earth vegetation ( USGS Spectra
Library (Clark et al. 2003)). Bottom: Nine idealised, broadband filters (width
= 0.2 𝜇m) between 0.45 - 2.25 𝜇m.

specific filters for any proposed telescope concept here, but we ex-
plore what the optimal choice would be to find water on an Earth-like
exoplanet’s surface to inform open design choices.
We propose machine learning as an effective method to charac-

terise terrestrial exoplanets’ reflected broadband photometry, along
with other statistical methods (e.g. compared to MCMC as shown
in this paper). Our machine learning method XGBoost performs
on a model grid of 53,130 Earth-size planets with varying surface
coverage of six major surfaces. Our aims are to i) assess machine
learning’s efficacy in classifying the existence of water, clouds or
snow, ii) identify optimal filters for characterisation for telescope
designs and iii) perform mock Bayesian analysis on fluxes attained
from these optimal filters.
First, we define an initial set of idealised, broadband filters. We

then train awell-known, versatilemachine learningmodel – XGBoost
(Chen & Guestrin 2016) – with fluxes derived using the broadband
filters, and assess it’s performance at various S/N. This approach
delivers an estimated signal-to-noise ratio cutoff for performance
maximisation. In addition, the trained XGBoost identifies a set of
five1 optimal filters through feature importance ranking. Using the
five optimal filters, we perform Bayesian inference through Markov-
chain Monte Carlo sampling. The analysis described in this paper
can be extended to any detected exoplanet by training the algorithm
on specific models pertaining to the specific planetary environment
(see Truitt et al. 2020).
This article is structured as follows: in section 2, we introduce the

planetary models; in section 3, we discuss the usage of XGBoost and
it’s performance; in section 4, we perform mock Bayesian analysis
on a case study of Earth and on one hundred random combinations
and in section 5 we summarise our findings.

2 DATA GENERATION

Weuse awell-known 1D atmosphericmodel (EXO-Prime2, details in
e.g. Kaltenegger & Lin 2021) to model a slightly colder Earth with a
surface temperature of 273Kwith modern Earth outgassing rates and
a Solar spectrumwith reduced luminosity of 0.875𝐿� corresponding
to a planet further away from the Sun than Earth to generate a cool
environment that would allow for snow to cover a large part of the
planet. While more complex 3Dmodels are used to model individual
planets and explore the effects of surface topography, and rotation
rate on specific planets, a computationally cheaper 1D model, which
generates a disk integrated flux over an entire planet’s surface for
broadband filters provides a suitable approximation for the parameter
space exploration we undertake here.
We use the six major surface components of modern Earth (water,

snow, basalt, vegetation, sand, clouds; following Kaltenegger et al.
2007) varying in 5% steps for surface coverage (Pham&Kaltenegger
2021) to generate the corresponding reflection spectra of 53,130 nom-
inal Earth-size planets. These reflecting components are 𝜃𝑖 , where 𝑖
ranges from 1-6 representing each component. We create spectra for
each nominal planet at a resolution of 0.01 cm−1 using Exo-Prime2,
a 1-D iterative climate-photochemistry code coupled to a line-by-
line- radiative transfer code (details in Kaltenegger & Lin 2021;
Kaltenegger et al. 2007; Kaltenegger & Traub 2009). The model
has been validated from the visible to infrared through compari-
son to Earth seen as an exoplanet by missions like the Mars Global
Surveyor, EPOXI, multiple Earthshine observations and Shuttle data
(Kaltenegger et al. 2007;Kaltenegger&Traub 2009;Rugheimer et al.
2013). It includes the most spectroscopically relevant molecules:
C2H6, CH4, CO, CO2, H2CO, H2O, H2O2, H2S, HNO3, HO2, N2O,
N2O5, NO2, O2, O3, OCS, OH, SO2, using the HITRAN2016 line
lists (Gordon et al. 2017) as well as Rayleigh scattering. We divide
the planet atmosphere into 52 layers: for each atmospheric layer the
code calculates line shapes and widths individually with Doppler-
and pressure-broadening with several points per line width.
The other major surface components’ albedo are taken from the

USGS Spectra Library (Clark et al. 2003), see Fig. 1 with Aspen leaf
representative modern Earth vegetation (for the effects of different
vegetation and biota and their identification through machine learn-
ing on Earth-like planets, see Pham & Kaltenegger 2021) and one
opaque water cloud layer at 6 km. The cloud reflectivity (following
Madden & Kaltenegger 2020) is based on the MODIS 20 𝜇m cloud
albedo model (King et al. 1997; Rossow & Schiffer 1999), which
provides an average albedo for clouds of different droplet size and
is representative of the 3 main water cloud layers on Earth at 1 km,
6 km and 12 km (see e.g. Kaltenegger et al. 2007). We restrict our
spectra wavelength to 0.41 - 2.35 𝜇m, because these are the avail-
able wavelengths of samples from the USGS Spectra Library. Note
that we do not adjust the atmosphere profile for different combina-
tions of reflective components, which introduces small changes in
the planet’s atmosphere and influences their high resolution spectra
(seeMadden&Kaltenegger 2020 for details). Here we are only inter-
ested in the broadband fluxes resulting from integrating the spectra
over broadband filters, and require tens of thousands of spectra for
machine learning and a similar number for model evaluations with
Markov-chain Monte Carlo. Hence, keeping a constant atmosphere
profile allows us to explore a wide parameter space and evaluate the
model efficiently.

1 We chose five filters based on previous instrument designs like the Nancy
Grace Roman Space Telescope (Spergel et al. 2013). The methodology here
can be easily extended to assess the trade-offs for more (or less) filters.
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Figure 2. Left: Graphic representation of the data generation process. 𝜃𝑖 represents the composition of each reflective component (cloud, snow, etc.), 𝑓𝑖 the
filters’ response, 𝑦𝑖 the true integrated flux from each filter and 𝑦obs𝑖

the observed flux. Gaussian noise is added to the true flux (N) producing a signal-to-noise
ratio (S/N). Right: Graphic of the machine learning pipeline – data generation, training and validation. 𝜃𝑖 represents the composition of a particular reflective
component (cloud, snow, etc.), N is the Gaussian model (given some signal-to-noise ratio). To each set of noiseless flux in the 20% random split noise is added
1000 times (1000 noise realisations). The balanced accuracy is calculated from the prediction of each realisation. Hence, at each S/N, we have 1000 balanced
accuracy scores. Yields in the shaded 95% confidence interval are shown in Fig. 3.

We initially created nine, idealised, broadband filters ( 𝑓𝑖) between
0.45 - 2.25 𝜇mwith awidth of 0.2 𝜇mwith an idealised filter response
(Fig. 1) to identify which filters facilitate an effective characterisation
of liquid water, snow and clouds on terrestrial exoplanets. We then
integrate the model planet spectra with these filters to generate the
corresponding true flux, 𝑦𝑖 , for each filter. We add Gaussian noise
to these true fluxes, producing the observed flux 𝑦obs

𝑖
, given some

S/N for our analysis (see Fig. 2 for a summary of the data generation
and the machine learning pipeline). For machine learning validation
(section 3), Gaussian noise with S/N in [5, 100] are added. For
the Bayesian data generation pipeline (section 4), Gaussian noise is
added at S/N = 10, 50, 100.

3 MACHINE LEARNING WITH XGBOOST

Weuse XGBoost (Chen&Guestrin 2016), a versatile, gradient boost-
ing algorithm (e.g. Tamayo et al. 2016), to perform binary classifica-
tion of liquid water, snow and clouds on our model planets. We are

classifying if a certain component 𝜃𝑖 exists (True) or not (False). In
our analysis, we train XGBoost to classify only either water, snow or
cloud at a time. Through a grid search, we find the default hyperpa-
rameters for XGBoost work well for our problem2.
The training and validation dataset are generated like in Pham &

Kaltenegger 2021. First, we create a grid of combinations of reflective
components 𝜃𝑖 , such that

∑6
𝑖=1 𝜃𝑖 = 1; 0 6 𝜃𝑖 6 13 where each

component 𝜃𝑖 ranges from 0 to 1, in steps of 0.05, subject to the unity
sum condition. Therefore, we create a total of 53,130 combinations.
Then, we create spectra 4 for each of these combination and nine
filter fluxes per spectra. We randomly split this dataset of 53,130 set
of nine fluxes into the training and validation datasets at a ratio of

2 We set the scale_pos_weight parameter, the ratio of negative to positive
samples in the training dataset, but the ratio is fixed for a given dataset.
3 This condition describes the 𝑛 − 1 simplex (𝑛 = 6 here). In other words,
we create a grid with resolution 0.05 on a 5-simplex.
4 The full spectra and filters dataset is publicly available at https://doi.
org/10.5281/zenodo.6234713.
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80-20. Thus, the training dataset contains 42,504 sets of fluxes (80%)
and the validation dataset the remaining 10,626 (20%).
We keep the training dataset noiseless. Gaussian noise is added to

the validation dataset for a given S/N. Each validation combination
has 1000 noise realisations at a given S/N. This way, we can evaluate
our trained model’s performance at various noise level. With this
methodology, the model is exposed to two different distributions:
noiseless for training data and noisy for validation data. Prior work by
Batalha et al. (2018);Hayes et al. (2020) similarly trained on noiseless
data. Our previous work (Pham & Kaltenegger 2021) tested training
on noisy and noiseless data and found the latter yielding better results.
This approach is versatile because it explores the capability of the
algorithms without specifying a noise profile to train on.
To evaluate performance, we use balanced accuracy. The problem

resulting from using accuracy instead of balanced accuracy for an
imbalanced dataset is discussed in details in Pham & Kaltenegger
(2021). As a brief summary, a simple metric to evaluating machine
learning efficiency is the accuracy (Eq. 1). However, this metric
only works well if the dataset is balanced – when sample counts in
all classes (True or False in this case) are equally distributed. We
label any set of fluxes with (snow, cloud, or water) components at
0% as False, and True otherwise. Our dataset is imbalanced: for
example, there are 42,504 combinations with snow (True prediction)
yet only 10,626 combinations without snow (False prediction). Using
the traditional accuracy usually leads to overly optimistic results
(Brodersen et al. 2010).
For imbalanced datasets, the balanced accuracy should be used

instead (Eq. 2), where sensitivity (True Positive Rate) gives the pro-
portion of true positives and specificity (True Negative Rate) gives
the proportion of true negatives. Balanced accuracy metric accounts
for the true positive and negative rates, instead of averaging over the
entire confusion matrix like the accuracy would. Note that another
metric that can be used on an imbalanced dataset is a confusion
matrix (see Pham & Kaltenegger 2021). However, the balanced ac-
curacy is a scalar value, which can be used when training the model
and can easily measure performance quantitatively.

accuracy =
correct predictions
total predictions

(1)

balanced accuracy =
sensitivity + specificity

2
(2)

XGBoost’s (trained under nine filters) balanced accuracy over var-
ious S/N is shown in panel (a) of Fig. 3. Snow and clouds reach
asymptotic to approximately unity, water to 0.7 balanced accuracy.
Furthermore, the shaded area representing the 95% confidence inter-
val acquired from 1000 noise realisations is small.
The difference in performance can be explained by the different

reflectivity of snow, clouds and liquid water shown in Fig. 1. The
reflectivity of water is low (< 0.1) and has a relatively featureless
shape. In contrast, the reflectivity of both snow and clouds show
specific features and reflect up to 80% of the incoming light for snow
and up to 60% for clouds. Liquid water surface features are more
difficult to identify than snow or clouds.
Note that Fig. 3a shows that for broadband filter photometry a S/N

of 20 already provide high accuracy prediction for the existence of
water on Earth-like planet models. Beyond S/N = 30, the balanced
accuracy becomes asymptotic, meaning additional signal yields a
relatively low increase in performance (in a statistical sense).
XGBoost results indicate that machine learning algorithms can be

effective tools to classify the existence of snow, clouds and water on
Earth-size exoplanets from photometric filter data even at low S/N.
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Figure 3. (a): Performance (measuredwith balanced accuracy) of XGBoost at
classifying the existence of snow, water or clouds at different signal-to-noise
ratio (S/N) with all nine idealised filters. The shaded area represents the 95%
confidence interval from 1000 noise realisations. The algorithm approaches
asymptotes at S/N≈ 30 (dashed line). (b): Same as (a), but for the five optimal
filters. Here, the dashed line is chosen when both water and snow reach their
asymptotes and cloud achieve a balanced accuracy > 0.9. (c): Feature (filters)
importance score ranking. A higher feature score implies greater importance
in classification. We select the top five optimal filters (underlined in red).

With the trained model, we identify the set of five optimal fil-
ters for identifying water on the surface of an terrestrial exoplanet
through photometry between 0.41 - 2.35 𝜇musing XGBoost’s feature
importance score. Here, ‘features’ are the filters for the surfaces we
want to identify. Ranking the nine fluxes (as generated by the nine
filters) by their importance score allows us to determine the optimal
filters (Fig. 3c): 𝑓1 (0.45 - 0.65), 𝑓4 (1.05 - 1.25), 𝑓5 (1.25 - 1.45),
𝑓6 (1.45 - 1.65), and 𝑓8 (1.85 - 2.05). Note that the choice of optimal
filters are method (XGBoost) and model dependent (1D atmosphere
EXO-Prime2, USGS albedo spectral library). In section 4, we study
if the optimal filters for XGBoost yield effective performance with a
Bayesian approach (MCMC).
Comparing the importance scores (Fig. 3c) with the wavelength

dependent albedo of each component (Fig. 1) shows peaks of re-
flectivity of the surfaces in the corresponding filters. The results are
based on the built-in XGBoost method, and are consistent with the
expectations from surface albedos in Fig 1. For example, three of
the best ranked filters for cloud detection are 𝑓5, 𝑓8 and 𝑓9, which
correspond to cloud reflection peaks between 1.6 - 1.9 𝜇m and 2.1
- 2.3 𝜇m. Similar correspondence between reflection features and
optimal filters exist for snow and water.
Figure 3b shows the balanced accuracy of XGBoost using only

the five optimal filters. Water and clouds reach a lower overall bal-
anced accuracy asymptote, snow reaches its earlier asymptote value
at higher S/N. These effects are expected because the five filter pro-
vide less data compared to the nine filters used in the top panel and
our earlier analysis. In Fig. 3b, we identify S/N ≈ 50 (dashed line)
as the cutoff for additional signal rewards. However, note that our
results show that even a S/N of ≈ 20 yields a strong performance
in accurately predicting the existence of water on the surface of an
Earth-like exoplanet.
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Figure 4. Corner plot showing the 1-D and 2-D marginalised distributions of
water, snow and clouds for one random realisation with modern Earth surface
composition at S/N = 50. The dashed lines represent the median and the 95%
credible interval, the solid blue lines mark the true value.

4 BAYESIAN ANALYSIS

We asses the surface composition of our model planets regard-
ing liquid water, snow or clouds with Bayesian inferencing us-
ing Markov-chain Monte Carlo (MCMC) for data from the set of
five optimal filters identified earlier, That is, inferring 𝜃𝑖 given
{𝑦obs1 , 𝑦obs3 , 𝑦obs4 , 𝑦obs5 , 𝑦obs7 }, assuming the model planet spectra and
Gaussian noise.
Our posterior distribution function is

P(𝜃 |𝑦obs) ∝ U∗
𝜃 (0, 1) ×

∏
𝑖

1√︃
2𝜋𝜎2

𝑖

exp

(
−1
2
(𝑦obs

𝑖
− 𝑦𝜃

𝑖
)2

𝜎2
𝑖

)
(3)

where 𝜃 = {𝜃1, ..., 𝜃6} are the components’ composition, 𝑦obs𝑖
are

the (selected optimal) observed fluxes, 𝑦𝜃
𝑖
are the modelled plane-

tary fluxes in each filter 𝜃, and 𝜎𝑖 are the measurement error. The
product term is the likelihood function, assuming a Gaussian noise
model. Each component 𝜃𝑖 ∈ [0, 1], and the sum of all components
must be exactly unity. Since we don’t know the distribution of ex-
oplanets’ surface compositions, we assume that any combination of
𝜃𝑖 summing to unity is equally likely. Hence, we propose a uniform
5-simplex prior, defined as:

U∗
𝜃 (0, 1) ∝

{
1

∑6
𝑖=1 𝜃𝑖 = 1; 0 6 𝜃𝑖 6 1

0 otherwise
(4)

We sample this posterior distribution function using emcee
(Foreman-Mackey et al. 2013).
We first perform a case study of one realisation for a model planet

with modern Earth’s surface composition at S/N = 50 for the five
identified filters. This corresponds to a sample case of a planet-by-
planet analysis that would be done for a specific exoplanet (here
we choose the Earth model case). Modern Earth surface seen from
space consists on average of about 50% clouds. The 50% surface
is composed of about 70% seawater, 5.4% basalt, 4.5% snow, 2.1%
sand, and 18% vegetation (Kaltenegger et al. 2007). These factors
represent our 𝜃𝑖’s for this case, which sum to unity.
Figure 4 shows the 1-D and 2-D marginalised distributions of wa-

ter, snow and clouds for this one particular realisation at S/N = 50: It
shows the median and 95% credible interval estimates from MCMC
and the true composition. TheMCMC’s 95% credible interval covers
the true value, and the median estimate is close as well. The results
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Figure 5. Residual between MCMC median estimates and the true values
at S/N = 10, 50, 100, for one hundred random compositions. 𝜃MCMCmedian is the
median estimate from MCMC and 𝜃 is the true value. The greatest residual
for all three S/N is max |𝜃MCMCmedian − 𝜃 | = 0.26.

demonstrate that it is feasible to infer the surface composition regard-
ing water as liquid, snow and clouds on a terrestrial exoplanet based
on the proposed five optimal filters, within a 95% credible interval
for this particular combination.
Figure 5 shows the results when we extend the analysis to one

hundred random combinations, each with added noise at S/N of 10,
50 and 100. It shows the residual between MCMCmedian estimates,
𝜃MCMCmedian , and the true values, 𝜃. Note that the residual for snow and
cloud reduces significantly as S/N increases. This corresponds to
the balanced accuracy performance from XGBoost with increasing
S/N (Fig. 3) due to the reflection features of the three surfaces (see
Fig. 1). Snow and clouds reflect more incoming star light and show
features over the wavelength range covered. In contrast the albedo
of liquid seawater is comparably smooth, making liquid water more
difficult to identify than snow or clouds. Finally, most residuals are
accurate to within 5% for snow and clouds at S/N & 50 – these result
highlighting the potential of using photometric filters to assess the
existence of water on a terrestrial exoplanet.

5 CONCLUSION

We explored the feasibility of detectingwater on the surface of terres-
trial exoplanets in its various forms (snow, clouds and liquid water)
through broadband photometry using machine learning and Markov-
chain Monte Carlo (MCMC).
First, we trained a well known, versatile machine learning algo-

rithm, XGBoost, to perform binary classification on the existence of
snow, clouds and water on an exoplanet’s surface using broadband
photometric flux. The performance show promise to use machine
learning on photometric data to identify water on the surface of ter-
restrial exoplanets (Fig. 3a,b): the algorithm achieves a high (> 90%)
balanced accuracy for snow and clouds for S/N & 20) and up to 70%
balanced accuracy for liquid water.
Second, we identified five optimal filters to identify snow, clouds

and liquid water on a terrestrial planet’s surface between 0.45 - 2.25
𝜇m based on XGBoost’s feature importance ranking. These optimal
filters (Fig. 3c), could be implemented in telescopes designs that
search for water on exoplanets.
Third, we tested these optimal filters by performing Bayesian in-

ferences using MCMC on i) an Earth case study, and ii) one hun-
dred random realisations of our planetary models. The results show
promise, with most predictions at S/N & 50 within 5% of the true
value for finding snow and clouds. Detecting liquid water is more
challenging, but most predictions are within 20% of the true values.

MNRAS 000, 1–6 (2022)
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In a typical workflow, we expect to use machine learning for fast
prioritisation and use MCMC for further constraints. The advantage
of machine learning is it’s fast run time (in our runs, about 1 minute
for 53,000 sets of fluxes), comparing to MCMC sampling’s (about
15 minutes per set of fluxes). We find that machine learning can be
an additional fast and accurate retrieval pathway. Note that MCMC
would only require ∼ 2500 hours for 10,000 samples.
The results showed that broadband filter photometry combined

with machine learning provides a promising tool for initial charac-
terisation of water in different forms on the surface of terrestrial
exoplanets and their prioritisation for time-intense follow-up obser-
vations for a smaller observing time cost.
Broadband filter photometry could allow large missions like

HabEx and LUVOIR to initially characterise targets for follow-up
and smaller telescopes like the Nancy Grace Roman telescope to
help with initial characterisation of nearby rocky worlds.
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